Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17374   Accepted: 7312

Description

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible. 
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0

Sample Output

Case 1: Yes
Case 2: No
这题较简单,使用bellman-ford算法就可以了,注意输出,我因为输出WA几次
 #include <iostream>
#include<map>
#include<string.h>
using namespace std;
struct edge{
int u,v;
float rate;
} e[*];
int cur_num,edge_num;
float dis[];
map<string,int> mp;
int Bellman_ford(int c){
memset(dis,,*sizeof(float));
dis[c]=1.0;
for(int i=;i<cur_num;i++){
for(int j=;j<edge_num;j++){
if(dis[e[j].v]<dis[e[j].u]*e[j].rate){
dis[e[j].v]=dis[e[j].u]*e[j].rate;
}
}
}
if(dis[c]>1.0)
return ;
else
return ;
}
int main() {
int count=;
cin>>cur_num;
while(cur_num){
mp.clear();
for(int i=;i<cur_num;i++){
string s;
cin>>s;
mp[s]=i;
}
cin>>edge_num;
for(int i=;i<edge_num;i++){
string s1,s2;
float rate;
cin>>s1>>rate>>s2;
e[i].u=mp[s1];
e[i].v=mp[s2];
e[i].rate=rate;
}
int flag=;
for(int i=;i<cur_num;i++){
flag=Bellman_ford(i);
if(flag)
break;
} if(flag)
cout<<"Case "<<++count<<": Yes"<<endl;
else
cout<<"Case "<<++count<<": No"<<endl;
cin>>cur_num;
}
return ;
}

Arbitrage - poj 2240 (Bellman-ford)的更多相关文章

  1. Arbitrage POJ - 2240

    题目链接:https://vjudge.net/problem/POJ-2240 思路:判正环,Bellman-ford和SPFA,floyd都可以,有正环就可以套利. 这里用SPFA,就是个板子题吧 ...

  2. poj 2240 Arbitrage 题解

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21300   Accepted: 9079 Descri ...

  3. 最短路(Floyd_Warshall) POJ 2240 Arbitrage

    题目传送门 /* 最短路:Floyd模板题 只要把+改为*就ok了,热闹后判断d[i][i]是否大于1 文件输入的ONLINE_JUDGE少写了个_,WA了N遍:) */ #include <c ...

  4. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  5. poj 2240 Arbitrage (Floyd)

    链接:poj 2240 题意:首先给出N中货币,然后给出了这N种货币之间的兑换的兑换率. 如 USDollar 0.5 BritishPound 表示 :1 USDollar兑换成0.5 Britis ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  9. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

随机推荐

  1. Android开发之如何保证Service不被杀掉(broadcast+system/app

    Android开发之如何保证Service不被杀掉(broadcast+system/app) 序言 最近项目要实现这样一个效果:运行后,要有一个service始终保持在后台运行,不管用户作出什么操作 ...

  2. cocurrent包 原子性数据类型

    22. 原子性布尔 AtomicBoolean AtomicBoolean 类为我们提供了一个可以用原子方式进行读和写的布尔值,它还拥有一些先进的原子性操作,比如 compareAndSet().At ...

  3. JAVA常见算法题(十六)

    package com.xiaowu.demo; //猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个: //第二天早上又将剩下的桃子吃掉一半,而且又多吃了一个. //以后 ...

  4. [置顶] kubernetes资源类型--Volume

    在Docker的设计实现中,容器中的数据是临时的,即当容器被销毁时,其中的数据将会丢失.如果需要持久化数据,需要使用Docker数据卷挂载宿主机上的文件或者目录到容器中.在K8S中,当Pod重建的时候 ...

  5. Ubuntu下安装配置JDK

    第一步:下载jdk-7-linux-i586.tar.gz wget -c http://download.oracle.com/otn-pub/java/jdk/7/jdk-7-linux-i586 ...

  6. appium 几点总结(转)

    1. 建立session时常用命令: DesiredCapabilities cap = new DesiredCapabilities(); cap.SetCapability("brow ...

  7. pclint在VS2013中的配置

    1.安装pclint a. 从http://download.csdn.net/detail/finewind/8426979下载破解版的pclint9i版: b. 点击pclint9setuo.ex ...

  8. HTML5 Canvas 动态勾画等速螺线

    等速螺线亦称阿基米德螺线,得名于公元前三世纪希腊数学家阿基米德.阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹.在此向这位古代最伟大的数学家致敬.用Canvus ...

  9. ["1", "2", "3"].map(parseInt) 结果

    // 下面的语句返回什么呢: ["1", "2", "3"].map(parseInt); // 你可能觉的会是[1, 2, 3] // 但 ...

  10. java统计中英文字数 Java问题通用解决代码

    http://yangchao20020.blog.163.com/blog/static/483822472011111635424751/   这个不适用于新浪微博字数的统计,结果有差别,若需要可 ...