Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17374   Accepted: 7312

Description

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible. 
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0

Sample Output

Case 1: Yes
Case 2: No
这题较简单,使用bellman-ford算法就可以了,注意输出,我因为输出WA几次
 #include <iostream>
#include<map>
#include<string.h>
using namespace std;
struct edge{
int u,v;
float rate;
} e[*];
int cur_num,edge_num;
float dis[];
map<string,int> mp;
int Bellman_ford(int c){
memset(dis,,*sizeof(float));
dis[c]=1.0;
for(int i=;i<cur_num;i++){
for(int j=;j<edge_num;j++){
if(dis[e[j].v]<dis[e[j].u]*e[j].rate){
dis[e[j].v]=dis[e[j].u]*e[j].rate;
}
}
}
if(dis[c]>1.0)
return ;
else
return ;
}
int main() {
int count=;
cin>>cur_num;
while(cur_num){
mp.clear();
for(int i=;i<cur_num;i++){
string s;
cin>>s;
mp[s]=i;
}
cin>>edge_num;
for(int i=;i<edge_num;i++){
string s1,s2;
float rate;
cin>>s1>>rate>>s2;
e[i].u=mp[s1];
e[i].v=mp[s2];
e[i].rate=rate;
}
int flag=;
for(int i=;i<cur_num;i++){
flag=Bellman_ford(i);
if(flag)
break;
} if(flag)
cout<<"Case "<<++count<<": Yes"<<endl;
else
cout<<"Case "<<++count<<": No"<<endl;
cin>>cur_num;
}
return ;
}

Arbitrage - poj 2240 (Bellman-ford)的更多相关文章

  1. Arbitrage POJ - 2240

    题目链接:https://vjudge.net/problem/POJ-2240 思路:判正环,Bellman-ford和SPFA,floyd都可以,有正环就可以套利. 这里用SPFA,就是个板子题吧 ...

  2. poj 2240 Arbitrage 题解

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21300   Accepted: 9079 Descri ...

  3. 最短路(Floyd_Warshall) POJ 2240 Arbitrage

    题目传送门 /* 最短路:Floyd模板题 只要把+改为*就ok了,热闹后判断d[i][i]是否大于1 文件输入的ONLINE_JUDGE少写了个_,WA了N遍:) */ #include <c ...

  4. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  5. poj 2240 Arbitrage (Floyd)

    链接:poj 2240 题意:首先给出N中货币,然后给出了这N种货币之间的兑换的兑换率. 如 USDollar 0.5 BritishPound 表示 :1 USDollar兑换成0.5 Britis ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  9. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

随机推荐

  1. 集合框架(02)List

    List的类型和特点: ArrayList:底层的数据结构使用的是数组结构.特点:查询的速度很快,但是增删稍慢 线程不同步 LinKedList:底层使用的链表数据结构.特点:增删的速度很快,查询稍慢 ...

  2. MySQL四种类型日志:Error Log、General Query Log、Binary Log、Slow Query Log

    MySQL Server 有四种类型的日志——Error Log.General Query Log.Binary Log 和 Slow Query Log. 第一个是错误日志,记录mysqld的一些 ...

  3. linux命令详解:df命令

    转:http://www.cnblogs.com/lwgdream/p/3413579.html 前言 df命令用来查看系统的space和inode使用情况,也是常用命令之一 使用说明 -a 显示所有 ...

  4. Using ASIHTTPRequest in an iOS project

    1) Add the files Copy the files you need to your project folder, and add them to your Xcode project. ...

  5. 设计模式之组合模式(PHP实现)

    github地址:https://github.com/ZQCard/design_pattern /** 组合模式(Composite Pattern),又叫部分整体模式,是用于把一组相似的对象当作 ...

  6. Redis 命令二

    一.连接控制 QUIT 关闭连接 AUTH (仅限启用时)简单的密码验证 二.适合全体类型的命令 EXISTS key 判断一个键是否存在;存在返回 1;否则返回0; DEL key 删除某个key, ...

  7. java学习笔记——大数据操作类

    java.math包中提供了两个大数字操作类:BigInteger(大整数操作类) BigDecimal(大小数操作类). 大整数操作类:BigInteger BigInteger类构造方法:publ ...

  8. Vue笔记五

    十二.过滤器(filter) 示例代码: <template> <div id="app"> {{ msg | capitalize }} </div ...

  9. DNS原理及其解析过程【精彩剖析】

    DNS原理及其解析过程[精彩剖析] 2012-03-21 17:23:10 标签:dig wireshark bind nslookup dns 原创作品,允许转载,转载时请务必以超链接形式标明文章 ...

  10. 杂(三)-The type java.lang.Object cannot be resolved It is indirectly referenced ...

    The type java.lang.Object cannot be resolved. It is indirectly referenced from required .class files ...