【Sklearn系列】使用Sklearn进行数据预处理
这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本。
读取数据并创建数据表格,查看数据相关信息
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
data = pd.read_csv('tanic_train.csv')#导入进来的是dataframe格式
#data 可以打开data的具体信息,是dataframe的格式
#data.info() #显示了基本信息的总和,包括有多少行,多少列,每列包含多少的数据,可以看出是否具有缺失值
#data.describe() #可以得到一些方差均值等统计信息,当然这是针对于数据,对于文本信息这里是没有显示的
#data['Sex'].unique()#可以判断出函数值取值范围
data.head(5) #显示数据集合前五行的内容
表格内容如下所示

填充缺失值(数据预处理的第一步就是处理缺失值)
- 对于缺失值不多不少的数据特征,我们可以使用机器学习模型进行缺失值得填充,例如随机森林,逻辑回归,线性回归
# 把已有的数值型特征取出来形成一个新的数据框
from sklearn.ensemble import RandomForestRegressor
age_df = data[['Age','Fare','Parch','SibSp','Pclass']]
# 乘客分成已知年龄和未知年龄两部分
known_age = age_df[age_df.Age.notnull()].as_matrix()# as_matrix()是为了将dataframe格式转为数组的格式,方便用于机器学习模型
#known_age
unknown_age = age_df[age_df.Age.isnull()].as_matrix()
#unknown_age
#y 即目标年龄
y = known_age[:,0]
# x即特征属性值
x = known_age[:,1:]##
#fit到随机森林回归算法中去
rfr = RandomForestRegressor(random_state = 0,n_estimators = 2000, n_jobs = -1)
rfr.fit(x,y)
# 用得到的模型进行位置年龄的结果预测
predictedAges = rfr.predict(unknown_age[:,1:]) #看一下里面是啥
#用得到的预测结果填补原缺失数据
data.loc[data.Age.isnull(),'Age'] = predictedAges ##去掉括号试试
- 对于缺失值太多的特征,我们可以直接删去,或者采取让不是缺失值的为1,缺失值为0
data.loc[data_train.Cabin.notnull(),'Cabin'] = 0
data.loc[data_train.Cabin.isnull(),'Cabin'] = 1
- 对于数据缺失值很少的我们可以采用均值或者中位数替代的方法
data["Age"] = data["Age"].fillna(data["Age"].median()/mean())
处理类目型数据
data['Embarked'].unique()
data['Embarked'] = data['Embarked'].fillna('S')
data.loc[data["Embarked"] == "S", "Embarked"] = 0
data.loc[data["Embarked"] == "C", "Embarked"] = 1
data.loc[data["Embarked"] == "Q", "Embarked"] =2
data.loc[data.Cabin.notnull(),'Cabin'] = 0
data.loc[data.Cabin.isnull(),'Cabin'] = 1
data.loc[data['Sex']=='male','Sex'] = 1
data.loc[data['Sex']=='female','Sex'] = 0
从dataframe中挑选我们需要的特征值
data=data[['Age','Survived','Fare','Pclass','Parch','Sex','SibSp','Cabin','Embarked']]
数据标准化(标准差标准化,经过处理的数据符合均值为0,标准差为1的标准正态分布)
st=np.array(X[['Age']])
scaler = preprocessing.StandardScaler().fit(st)
#在fit函数中,如果特征值只是一列的话,一定要注意在从数据集合挑选这一列特征的时候要使用X[['someting']],这样在使用np.array()之后才是可以被使用的
X['Age']=scaler.transform(st)
st2=np.array(X[['Fare']])
scaler = preprocessing.StandardScaler().fit(st2)
X['Fare']=scaler.transform(st2)
【Sklearn系列】使用Sklearn进行数据预处理的更多相关文章
- 【深度学习系列】PaddlePaddle之数据预处理
上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的 ...
- sklearn系列之 sklearn.svm.SVC详解
首先我们应该对SVM的参数有一个详细的认知: sklearn.svm.SVC 参数说明: 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问 ...
- 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...
- 吴裕雄 python 机器学习——数据预处理嵌入式特征选择
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.li ...
- 使用sklearn进行数据挖掘-房价预测(4)—数据预处理
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...
- sklearn数据预处理-scale
对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as ...
- 【sklearn】数据预处理 sklearn.preprocessing
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...
- sklearn数据预处理
一.standardization 之所以标准化的原因是,如果数据集中的某个特征的取值不服从标准的正太分布,则性能就会变得很差 ①函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准 ...
- sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...
随机推荐
- BOM DOM区别 来源
DOM 是为了操作文档出现的 API,document 是其的一个对象:BOM 是为了操作浏览器出现的 API,window 是其的一个对象. BOM是浏览器对象模型,DOM是文档对象模型,前者是对浏 ...
- jQuery实现焦点图[兼容ie7+]
HTML: <div class="freehand" id="freehand"> <h1>宠物手绘</h1> <d ...
- Android Process & Thread
Native Service and Android Service Native Service:In every main() method of NativeService, which is ...
- StackTrack for debug
System.Diagnostics.Debug.WriteLine("Serial port. {0},{1}", this.GetType().FullName, new Sy ...
- html和java的交互,利用jsBridge开源框架
html中,js注册监听和回调 function connectWebViewJavascriptBridge(callback) { if (window.WebViewJavascriptBrid ...
- 夜色的 cocos2d-x 开发笔记 00
第一次写博客,本人还是大二学生,纯新手,无论是文章的技术性,还是参考性,都不高,但却是根据我的经历,开发过的真实过程,对自己记载一些备忘的笔记,更希望也能帮到一些人. 本人用的win7 + vs201 ...
- Java 空对象设计模式(Null Object Pattern) 讲解
转自:http://www.cnblogs.com/haodawang/articles/5962531.html 有时候我们的代码中为避免 NullPointerException 会出现很多的对N ...
- 启动selenium server
java -jar selenium-server-standalone-2.37.0.jar
- API:Sign签名的执行流程
Sign签名存在目的:为了防止不法分子修改参数数据,进而攻击服务器,导致数据泄露或从中获得利益 例如:一个接口是用户把积分转帐给他的朋友,修改后,变为转帐到攻击者的帐户,这样,攻击者就能得到利益 ...
- Cygwin Run in the Windows(Simulation of UNIX)
Preface Environment Cygwin Run in the Windows(Simulation of UNIX) Resource Cygwin Install:http://cyg ...