BZOJ4825 [Hnoi2017]单旋 【线段树】
题目链接
题解
手模一下操作,会发现一些很优美的性质:
每次旋到根,只有其子树深度不变,剩余点深度\(+1\)
每次旋到根,【最小值为例】右儿子接到其父亲的左儿子,其余点形态不改变,然后将该点接到根之上,原根变为其右儿子
每次插入,都是插入到其前驱后继深度较大的那一个点之下
所以我们很容易模拟出树的形态,同时用线段树维护离散化后各权值的深度
#include<iostream>
#include<cstdio>
#include<cmath>
#include<set>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
set<int> S;
struct Que{
int opt,v;
}Q[maxn];
int fa[maxn],ls[maxn],rs[maxn];
int b[maxn],tot,m;
int getn(int x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int val[maxn << 2],tag[maxn << 2];
void pd(int u){
if (tag[u]){
val[u << 1] += tag[u]; tag[u << 1] += tag[u];
val[u << 1 | 1] += tag[u]; tag[u << 1 | 1] += tag[u];
tag[u] = 0;
}
}
void change(int u,int l,int r,int pos,int v){
if (l == r) {val[u] = v; return;}
pd(u);
int mid = l + r >> 1;
if (mid >= pos) change(u << 1,l,mid,pos,v);
else change(u << 1 | 1,mid + 1,r,pos,v);
}
void modify(int u,int l,int r,int L,int R,int v){
if (l >= L && r <= R) {val[u] += v; tag[u] += v; return;}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(u << 1,l,mid,L,R,v);
if (mid < R) modify(u << 1 | 1,mid + 1,r,L,R,v);
}
int query(int u,int l,int r,int pos){
if (l == r) return val[u];
pd(u);
int mid = l + r >> 1;
if (mid >= pos) return query(u << 1,l,mid,pos);
return query(u << 1 | 1,mid + 1,r,pos);
}
void print(int u,int l,int r){
if (l == r) printf("%d ",val[u]);
else {
pd(u);
int mid = l + r >> 1;
print(u << 1,l,mid);
print(u << 1 | 1,mid + 1,r);
}
}
int main(){
m = read(); int n = 0;
REP(i,m){
Q[i].opt = read();
if (Q[i].opt == 1) b[++n] = Q[i].v = read();
}
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
S.insert(0); S.insert(tot + 10);
int pre,nxt,d1,d2,u,v,rt;
for (int i = 1; i <= m; i++){
if (Q[i].opt == 1){
u = getn(Q[i].v);
S.insert(u);
pre = *--S.find(u);
nxt = *++S.find(u);
if (pre == 0 && nxt == tot + 10)
change(1,1,tot,u,1),rt = u;
else if (pre == 0){
d1 = query(1,1,tot,nxt);
change(1,1,tot,u,d1 + 1);
fa[u] = nxt; ls[nxt] = u;
}
else if (nxt == tot + 10){
d2 = query(1,1,tot,pre);
change(1,1,tot,u,d2 + 1);
fa[u] = pre; rs[pre] = u;
}
else {
d1 = query(1,1,tot,nxt);
d2 = query(1,1,tot,pre);
if (d1 > d2){
change(1,1,tot,u,d1 + 1);
fa[u] = nxt; ls[nxt] = u;
}
else {
change(1,1,tot,u,d2 + 1);
fa[u] = pre; rs[pre] = u;
}
}
ls[u] = rs[u] = 0;
printf("%d\n",query(1,1,tot,u));
}
else if (Q[i].opt == 2){
u = *++S.find(0);
printf("%d\n",query(1,1,tot,u));
if (!fa[u]) continue;
modify(1,1,tot,fa[u],tot,1);
change(1,1,tot,u,1);
v = fa[u];
ls[v] = rs[u]; if (rs[u]) fa[rs[u]] = v;
rs[u] = rt; fa[rt] = u; fa[u] = 0;
rt = u;
}
else if (Q[i].opt == 3){
u = *--S.find(tot + 10);
printf("%d\n",query(1,1,tot,u));
if (!fa[u]) continue;
modify(1,1,tot,1,fa[u],1);
change(1,1,tot,u,1);
v = fa[u];
rs[v] = ls[u]; if (ls[u]) fa[ls[u]] = v;
ls[u] = rt; fa[rt] = u; fa[u] = 0;
rt = u;
}
else if (Q[i].opt == 4){
u = *++S.find(0);
printf("%d\n",query(1,1,tot,u));
if (fa[u]) modify(1,1,tot,u,fa[u] - 1,-1);
else modify(1,1,tot,1,tot,-1);
if (v = fa[u]){
ls[v] = rs[u]; if (rs[u]) fa[rs[u]] = v;
rs[u] = 0;
}
else if (rs[u]) fa[rs[u]] = 0,rt = rs[u],rs[u] = 0;
S.erase(u);
}
else if (Q[i].opt == 5){
u = *--S.find(tot + 10);
printf("%d\n",query(1,1,tot,u));
if (fa[u]) modify(1,1,tot,fa[u] + 1,u,-1);
else modify(1,1,tot,1,tot,-1);
if (v = fa[u]){
rs[v] = ls[u]; if (ls[u]) fa[ls[u]] = v;
ls[u] = 0;
}
else if (ls[u]) fa[ls[u]] = 0,rt = ls[u],ls[u] = 0;
S.erase(u);
}
/*printf("rt = %d\n",b[rt]);
for (int i = 1; i <= tot; i++){
printf("node%d fa = %d ,ls = %d rs = %d\n",b[i],b[fa[i]],b[ls[i]],b[rs[i]]);
}
print(1,1,tot); puts("");*/
}
return 0;
}
BZOJ4825 [Hnoi2017]单旋 【线段树】的更多相关文章
- [BZOJ4825][HNOI2017]单旋(线段树+Splay)
4825: [Hnoi2017]单旋 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 667 Solved: 342[Submit][Status][ ...
- 【BZOJ4825】[Hnoi2017]单旋 线段树+set
[BZOJ4825][Hnoi2017]单旋 Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能 ...
- 【bzoj4825】[Hnoi2017]单旋 线段树+STL-set
题目描述 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天 ...
- BZOJ.4825.[AHOI/HNOI2017]单旋(线段树)
BZOJ LOJ 洛谷 这题不难啊,我怎么就那么傻,拿随便一个节点去模拟.. 我们只需要能够维护,将最小值或最大值转到根.模拟一下发现,对于最小值,它的右子树深度不变(如果存在),其余节点深度全部\( ...
- 洛谷P3721 [AH2017/HNOI2017]单旋(线段树 set spaly)
题意 题目链接 Sol 这题好毒瘤啊.. 首先要观察到几个性质: 将最小值旋转到根相当于把右子树变为祖先的左子树,然后将原来的根变为当前最小值 上述操作对深度的影响相当于右子树不变,其他的位置-1 然 ...
- bzoj4825 [Hnoi2017]单旋
Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必 ...
- BZOJ4825: [Hnoi2017]单旋(Splay)
题面 传送门 题解 调了好几个小时--指针太难写了-- 因为只单旋最值,我们以单旋\(\min\)为例,那么\(\min\)是没有左子树的,而它旋到根之后,它的深度变为\(1\),它的右子树里所有节点 ...
- [BZOJ4825][HNOI2017]单旋spaly
BZOJ Luogu 题目太长了,就不放了. 题解 首先声明一点,无论是splay还是spaly,插入一个新的元素,都要rotate到根!所以说题目也算是给了一个错误示范吧. 我们发现把最值旋转到根并 ...
- 4825: [Hnoi2017]单旋
4825: [Hnoi2017]单旋 链接 分析: 以后采取更保险的方式写代码!!!81行本来以为不特判也可以,然后就总是比答案大1,甚至出现负数,调啊调啊调啊调~~~ 只会旋转最大值和最小值,以最小 ...
随机推荐
- Spring框架基础2
Spring框架基础2 测试Spring的AOP思想和注解的使用 导包(在前面的基础上添加) SpringAOP名词解释 AOP编程思想:横向重复代码,纵向抽取:就是说多个地方重复的代码可以抽取出来公 ...
- DB - RDMS - MySQL优化
慢SQL会消耗打来难过的数据库CPU资源,特别是频繁执行的慢SQL语句,会造成大量任务的堆积,CPU瞬间增大.
- Java 算法随笔(一)
1. 最大子序列和问题 给定(可能有负数)整数a(1).a(2).……a(n),求 a(1)+a(2)+……+a(j)的最大值. 也就是:在一系列整数中,找出连续的若干个整数,这若干个整数之和最大.有 ...
- JDK学习---深入理解java中的HashMap、HashSet底层实现
本文参考资料: 1.<大话数据结构> 2.http://www.cnblogs.com/dassmeta/p/5338955.html 3.http://www.cnblogs.com/d ...
- struct2 命名空间
转自http://blog.csdn.net/carefree31441/article/details/4857546 使用Struts2,配置一切正常,使用常用tag也正常,但是在使用<s: ...
- PHP代码审计5-实战漏洞挖掘-cms后台登录绕过
cms后台登录绕过 练习源码:[来源:源码下载](数据库配置信息有误,interesting) 注:需进行安装 1.创建数据库 2.设置账号密码,连接数据库 3.1 正常登录后台,抓包分析数据提交位置 ...
- requestLayout 无效
今天,listview 的requestLayout 无效. 最后,我用了 getWindow().getDecorView().requestLayout(); 可以了.
- Windows下使用Nginx+tomcat配置负载均衡
Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.由俄罗斯的程序设计师Igor Sysoev所开发,供俄国大型的入口 ...
- elasticsearch索引和映射
目录 1. elasticsearch如何实现搜索 1.1 搜索实例 1.2 es中数据的类型 1.3 倒排索引 1.4 分析与分析器 1.4.1 什么是分析器 1.4.2 内置分析器种类 1.4.3 ...
- QQ空间相册展示特效
<!doctype html> <html lang="en"> <head> <title>QQ空间相册展示特效<title ...