题目链接

BZOJ4825

题解

手模一下操作,会发现一些很优美的性质:

每次旋到根,只有其子树深度不变,剩余点深度\(+1\)

每次旋到根,【最小值为例】右儿子接到其父亲的左儿子,其余点形态不改变,然后将该点接到根之上,原根变为其右儿子

每次插入,都是插入到其前驱后继深度较大的那一个点之下

所以我们很容易模拟出树的形态,同时用线段树维护离散化后各权值的深度

#include<iostream>
#include<cstdio>
#include<cmath>
#include<set>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
set<int> S;
struct Que{
int opt,v;
}Q[maxn];
int fa[maxn],ls[maxn],rs[maxn];
int b[maxn],tot,m;
int getn(int x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int val[maxn << 2],tag[maxn << 2];
void pd(int u){
if (tag[u]){
val[u << 1] += tag[u]; tag[u << 1] += tag[u];
val[u << 1 | 1] += tag[u]; tag[u << 1 | 1] += tag[u];
tag[u] = 0;
}
}
void change(int u,int l,int r,int pos,int v){
if (l == r) {val[u] = v; return;}
pd(u);
int mid = l + r >> 1;
if (mid >= pos) change(u << 1,l,mid,pos,v);
else change(u << 1 | 1,mid + 1,r,pos,v);
}
void modify(int u,int l,int r,int L,int R,int v){
if (l >= L && r <= R) {val[u] += v; tag[u] += v; return;}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(u << 1,l,mid,L,R,v);
if (mid < R) modify(u << 1 | 1,mid + 1,r,L,R,v);
}
int query(int u,int l,int r,int pos){
if (l == r) return val[u];
pd(u);
int mid = l + r >> 1;
if (mid >= pos) return query(u << 1,l,mid,pos);
return query(u << 1 | 1,mid + 1,r,pos);
}
void print(int u,int l,int r){
if (l == r) printf("%d ",val[u]);
else {
pd(u);
int mid = l + r >> 1;
print(u << 1,l,mid);
print(u << 1 | 1,mid + 1,r);
}
}
int main(){
m = read(); int n = 0;
REP(i,m){
Q[i].opt = read();
if (Q[i].opt == 1) b[++n] = Q[i].v = read();
}
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
S.insert(0); S.insert(tot + 10);
int pre,nxt,d1,d2,u,v,rt;
for (int i = 1; i <= m; i++){
if (Q[i].opt == 1){
u = getn(Q[i].v);
S.insert(u);
pre = *--S.find(u);
nxt = *++S.find(u);
if (pre == 0 && nxt == tot + 10)
change(1,1,tot,u,1),rt = u;
else if (pre == 0){
d1 = query(1,1,tot,nxt);
change(1,1,tot,u,d1 + 1);
fa[u] = nxt; ls[nxt] = u;
}
else if (nxt == tot + 10){
d2 = query(1,1,tot,pre);
change(1,1,tot,u,d2 + 1);
fa[u] = pre; rs[pre] = u;
}
else {
d1 = query(1,1,tot,nxt);
d2 = query(1,1,tot,pre);
if (d1 > d2){
change(1,1,tot,u,d1 + 1);
fa[u] = nxt; ls[nxt] = u;
}
else {
change(1,1,tot,u,d2 + 1);
fa[u] = pre; rs[pre] = u;
}
}
ls[u] = rs[u] = 0;
printf("%d\n",query(1,1,tot,u));
}
else if (Q[i].opt == 2){
u = *++S.find(0);
printf("%d\n",query(1,1,tot,u));
if (!fa[u]) continue;
modify(1,1,tot,fa[u],tot,1);
change(1,1,tot,u,1);
v = fa[u];
ls[v] = rs[u]; if (rs[u]) fa[rs[u]] = v;
rs[u] = rt; fa[rt] = u; fa[u] = 0;
rt = u;
}
else if (Q[i].opt == 3){
u = *--S.find(tot + 10);
printf("%d\n",query(1,1,tot,u));
if (!fa[u]) continue;
modify(1,1,tot,1,fa[u],1);
change(1,1,tot,u,1);
v = fa[u];
rs[v] = ls[u]; if (ls[u]) fa[ls[u]] = v;
ls[u] = rt; fa[rt] = u; fa[u] = 0;
rt = u;
}
else if (Q[i].opt == 4){
u = *++S.find(0);
printf("%d\n",query(1,1,tot,u));
if (fa[u]) modify(1,1,tot,u,fa[u] - 1,-1);
else modify(1,1,tot,1,tot,-1);
if (v = fa[u]){
ls[v] = rs[u]; if (rs[u]) fa[rs[u]] = v;
rs[u] = 0;
}
else if (rs[u]) fa[rs[u]] = 0,rt = rs[u],rs[u] = 0;
S.erase(u);
}
else if (Q[i].opt == 5){
u = *--S.find(tot + 10);
printf("%d\n",query(1,1,tot,u));
if (fa[u]) modify(1,1,tot,fa[u] + 1,u,-1);
else modify(1,1,tot,1,tot,-1);
if (v = fa[u]){
rs[v] = ls[u]; if (ls[u]) fa[ls[u]] = v;
ls[u] = 0;
}
else if (ls[u]) fa[ls[u]] = 0,rt = ls[u],ls[u] = 0;
S.erase(u);
}
/*printf("rt = %d\n",b[rt]);
for (int i = 1; i <= tot; i++){
printf("node%d fa = %d ,ls = %d rs = %d\n",b[i],b[fa[i]],b[ls[i]],b[rs[i]]);
}
print(1,1,tot); puts("");*/
}
return 0;
}

BZOJ4825 [Hnoi2017]单旋 【线段树】的更多相关文章

  1. [BZOJ4825][HNOI2017]单旋(线段树+Splay)

    4825: [Hnoi2017]单旋 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 667  Solved: 342[Submit][Status][ ...

  2. 【BZOJ4825】[Hnoi2017]单旋 线段树+set

    [BZOJ4825][Hnoi2017]单旋 Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能 ...

  3. 【bzoj4825】[Hnoi2017]单旋 线段树+STL-set

    题目描述 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天 ...

  4. BZOJ.4825.[AHOI/HNOI2017]单旋(线段树)

    BZOJ LOJ 洛谷 这题不难啊,我怎么就那么傻,拿随便一个节点去模拟.. 我们只需要能够维护,将最小值或最大值转到根.模拟一下发现,对于最小值,它的右子树深度不变(如果存在),其余节点深度全部\( ...

  5. 洛谷P3721 [AH2017/HNOI2017]单旋(线段树 set spaly)

    题意 题目链接 Sol 这题好毒瘤啊.. 首先要观察到几个性质: 将最小值旋转到根相当于把右子树变为祖先的左子树,然后将原来的根变为当前最小值 上述操作对深度的影响相当于右子树不变,其他的位置-1 然 ...

  6. bzoj4825 [Hnoi2017]单旋

    Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必 ...

  7. BZOJ4825: [Hnoi2017]单旋(Splay)

    题面 传送门 题解 调了好几个小时--指针太难写了-- 因为只单旋最值,我们以单旋\(\min\)为例,那么\(\min\)是没有左子树的,而它旋到根之后,它的深度变为\(1\),它的右子树里所有节点 ...

  8. [BZOJ4825][HNOI2017]单旋spaly

    BZOJ Luogu 题目太长了,就不放了. 题解 首先声明一点,无论是splay还是spaly,插入一个新的元素,都要rotate到根!所以说题目也算是给了一个错误示范吧. 我们发现把最值旋转到根并 ...

  9. 4825: [Hnoi2017]单旋

    4825: [Hnoi2017]单旋 链接 分析: 以后采取更保险的方式写代码!!!81行本来以为不特判也可以,然后就总是比答案大1,甚至出现负数,调啊调啊调啊调~~~ 只会旋转最大值和最小值,以最小 ...

随机推荐

  1. 洛谷P3611 [USACO17JAN]Cow Dance Show奶牛舞蹈

    题目描述 After several months of rehearsal, the cows are just about ready to put on their annual dance p ...

  2. python--Matplotlib(二)

    Matplotlib+pandas作图 一.对csv文件进行提取ruixi.csv 对上述表格进行提取并做图 #-*- coding:utf-8 -*- import matplotlib as mp ...

  3. js面向(基于)对象编程—类(原型对象)与对象

    JS分三个部分: 1. ECMAScript标准--基础语法 2. DOM  Document Object Model 文档对象模型 3. BOM  Browser Object Moldel 浏览 ...

  4. 使用命令行设置MySql编码格式

    使用命令行设置MySql编码格式 1.登录mysql 2.输入 SHOW VARIABLES LIKE 'character_set_%'; 3.查看 value值是否为utf8,如果不是,则使用SE ...

  5. python中的列表内置方法小结

    #!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' names=['zhangyu','mahongyan','zhangguobin','shac ...

  6. Linux段式管理与页式管理

    内存管理有2种机制:1.段式管理:2.页式管理 在80386CPU中增加了2个寄存器:1.全局性的段描述表寄存器GDTR 2.局部性的段描述表寄存器LDTR 段寄存器的高13位用于在全局或局部描述表项 ...

  7. python学习之map函数和reduce函数的运用

    MapReduce:面向大型集群的简化数据处理引文 map()函数 Python中的map()函数接收两个参数,一个是调用函数对象(python中处处皆对象,函数未实例前也可以当对象一样调用),另一个 ...

  8. ASCII码排序 南阳acm4

    ASCII码排序 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 输入三个字符(可以重复)后,按各字符的ASCII码从小到大的顺序输出这三个字符.   输入 第一行输 ...

  9. 关于原生JS获取class,ID等属性的一些封装

    一.传统上获取是通过document.getElementById获取元素的ID属性,通过总结与学习总结一下获取元素class以及id属性的一些封装; 1.创建构造函数,这里面不需要多解释什么:(主要 ...

  10. Python 装饰器执行顺序迷思

    Table of Contents 1. 探究多个装饰器执行顺序 1.1. 疑问 1.2. 函数和函数调用的区别 1.3. 装饰器函数在被装饰函数定义好后立即执行 1.4. 疑问的解释 2. 参考资料 ...