Problem description

One day Ms Swan bought an orange in a shop. The orange consisted of n·k segments, numbered with integers from 1 to n·k.

There were k children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the i-th (1 ≤ i ≤ k) child wrote the number ai (1 ≤ ai ≤ n·k). All numbers ai accidentally turned out to be different.

Now the children wonder, how to divide the orange so as to meet these conditions:

  • each child gets exactly n orange segments;
  • the i-th child gets the segment with number ai for sure;
  • no segment goes to two children simultaneously.

Help the children, divide the orange and fulfill the requirements, described above.

Input

The first line contains two integers nk (1 ≤ n, k ≤ 30). The second line contains kspace-separated integers a1, a2, ..., ak (1 ≤ ai ≤ n·k), where ai is the number of the orange segment that the i-th child would like to get.

It is guaranteed that all numbers ai are distinct.

Output

Print exactly n·k distinct integers. The first n integers represent the indexes of the segments the first child will get, the second n integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.

You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.

Examples

Input

2 2
4 1

Output

2 4 
1 3

Input

3 1
2

Output

3 2 1 
解题思路:这道题看辣么久才看懂,真的是怀疑自己的智商QAQ。输出有k行,每行必须包含一个儿童想要的那块橙子块编号(该行的任意位置输出都可以),再输出n-1个橙子块的编号,编号不能有重复输出,[1,n*k]中每个编号只输出1次即可。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,k,cnt=,a[],b[];
cin>>n>>k;
for(int i=;i<=n*k;++i)a[i]=i;
for(int i=;i<=k;++i){cin>>b[i];a[b[i]]=;}
for(int i=;i<=k;++i){
cout<<b[i];//每一行先输出b[i]
int t=;//t为计数器,一行输出n个数
while(t<n){
if(a[cnt]){cout<<' '<<a[cnt++];t++;}
else cnt++;
}
cout<<endl;
}
return ;
}

E - Dividing Orange的更多相关文章

  1. Codeforces Round #150 (Div. 2)

    A. Dividing Orange 模拟. B. Undoubtedly Lucky Numbers 暴力枚举\(x.y\). C. The Brand New Function 固定左端点,右端点 ...

  2. 利用Python【Orange】结合DNA序列进行人种预测

    http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data ...

  3. orange pi pc 体验(一)

    最近在淘宝上看到一款和树莓派差不多的卡片机,定价才99元,而且是国产的,忍不住入手了一个,就是orange pi 感兴趣的可以百度搜索下,深圳一个公司出的,不过资料比树莓派少了很多,论坛中人也没多少, ...

  4. POJ 1014 Dividing

    Dividing Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 66032 Accepted: 17182 Descriptio ...

  5. CF 371B Fox Dividing Cheese[数论]

    B. Fox Dividing Cheese time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. AC日记——Dividing poj 1014

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 69575   Accepted: 18138 Descri ...

  7. POJ 1014 Dividing(多重背包)

    Dividing   Description Marsha and Bill own a collection of marbles. They want to split the collectio ...

  8. Dividing a Chocolate(zoj 2705)

    Dividing a Chocolate zoj 2705 递推,找规律的题目: 具体思路见:http://blog.csdn.net/u010770930/article/details/97693 ...

  9. 动态规划--模板--hdu 1059 Dividing

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

随机推荐

  1. java编程题(一)

    [程序1]    题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题 p ...

  2. hibernate中的懒加载和急加载

    懒加载(FatchType.LAZY)是Hibernate为提高程序执行效率而提供的一种机制,简单说就是只有正真使用其属性的时候,数据库才会进行查询. 具体的执行过程就是:Hibernate从数据库获 ...

  3. 安卓代码迁移:Program "sh" not found in PATH

    Description    Resource    Path    Location    Type  Program  "sh"  not  found in PATH 参考链 ...

  4. js replace替换所有字符

    'abc...'.replace(new RegExp('oldStr', 'gm'), 'newStr')

  5. centos7 删除libc.so.6 紧急救援

    wget http://ftp.gnu.org/gnu/glibc/glibc-2.18.tar.gz tar zxvf glibc-2.18.tar.gz cd glibc-2.18 mkdir b ...

  6. NW.js构建PC收银端安装程序的指南

    1.首先下载nw.js的SDK: https://nwjs.org.cn/download.html 2.SDK目录下新建myapp文件夹: 3.myapp文件夹内新建package.json文件: ...

  7. 从读写分离到 CQRS,张大胖是如何解决性能问题的?

    转自:https://mp.weixin.qq.com/s/rpiYZkxiLKa77OFw8XaBwA 不堪重负的数据库 张大胖公司的数据库已经不堪重负了. 这个系统最早是两个实习生写的, 按照最初 ...

  8. MySQL中的注释符号的使用

    前言 在学习MySQL的过程中,因为目前接触的语法简单,所以实在没有想到过加入注释.在写博客使用Markdown时,突然想用注释语句,所以便百度了一下,引用了这一篇转载博客. MySQL中的注释符号有 ...

  9. 认识一下.net的架构设计

    首先我们先逐步的了解一下.net都包含什么? 从层次结构上来看,公共语言运行时(CLR:Common Language Runtime).服务框架(Services Framework)和上层的两类应 ...

  10. sublime text 插件emmet快捷命令

    原文链接:http://www.17yaobai.com/?p=255 语法: 后代:> 缩写:nav>ul>li <nav> <ul> <li> ...