SPOJ 694/705 后缀数组
思路:
论文题*n
Σn-i-ht[i]+1 就是结果 O(n)搞定~
//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 55555
int cases,n,cntA[N],cntB[N],A[N],B[N],rk[N],sa[N],tsa[N],ht[N];
char s[N];
void SA(){
memset(cntA,0,sizeof(cntA));
for(int i=1;i<=n;i++)cntA[s[i]]++;
for(int i=1;i<=256;i++)cntA[i]+=cntA[i-1];
for(int i=n;i;i--)sa[cntA[s[i]]--]=i;
rk[sa[1]]=1;
for(int i=2;i<=n;i++)rk[sa[i]]=rk[sa[i-1]]+(s[sa[i]]!=s[sa[i-1]]);
for(int l=1;rk[sa[n]]<n;l<<=1){
memset(cntA,0,sizeof(cntA));
memset(cntB,0,sizeof(cntB));
for(int i=1;i<=n;i++)
cntA[A[i]=rk[i]]++,
cntB[B[i]=i+l<=n?rk[i+l]:0]++;
for(int i=1;i<=n;i++)cntA[i]+=cntA[i-1],cntB[i]+=cntB[i-1];
for(int i=n;i;i--)tsa[cntB[B[i]]--]=i;
for(int i=n;i;i--)sa[cntA[A[tsa[i]]]--]=tsa[i];
rk[sa[1]]=1;
for(int i=2;i<=n;i++)rk[sa[i]]=rk[sa[i-1]]+(A[sa[i]]!=A[sa[i-1]]||B[sa[i]]!=B[sa[i-1]]);
}
for(int i=1,j=0;i<=n;i++){
j=j?j-1:0;
while(s[i+j]==s[sa[rk[i]-1]+j])j++;
ht[rk[i]]=j;
}
}
int main(){
scanf("%d",&cases);
while(cases--){
long long ans=0;
scanf("%s",s+1),n=strlen(s+1),SA();
for(int i=1;i<=n;i++)ans+=n-i-ht[i]+1;
printf("%lld\n",ans);
}
}
SPOJ 694/705 后缀数组的更多相关文章
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- 【SPOJ – REPEATS】 后缀数组【连续重复子串】
字体颜色如何 字体颜色 SPOJ - REPEATS 题意 给出一个字符串,求重复次数最多的连续重复子串. 题解 引自论文-后缀数组--处理字符串的有力工具. 解释参考博客 "S肯定包括了字 ...
- Lexicographical Substring Search SPOJ - SUBLEX (后缀数组)
Lexicographical Substrings Search \[ Time Limit: 149 ms \quad Memory Limit: 1572864 kB \] 题意 给出一个字符串 ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- SPOJ - REPEATS Repeats (后缀数组)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- 洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)
真是一个三倍经验好题啊. 我们来观察这个题目,首先如果直接整体计算,怕是不太好计算. 首先,我们可以将每个子串都看成一个后缀的的前缀.那我们就可以考虑一个一个后缀来计算了. 为了方便起见,我们选择按照 ...
- POJ.2774.Long Long Message/SPOJ.1811.LCS(后缀数组 倍增)
题目链接 POJ2774 SPOJ1811 LCS - Longest Common Substring 比后缀自动机慢好多(废话→_→). \(Description\) 求两个字符串最长公共子串 ...
- spoj 694 705 不相同的子串的个数
http://www.spoj.com/problems/SUBST1/ SUBST1 - New Distinct Substrings #suffix-array-8 Given a string ...
- SPOJ DISUBSTR(后缀数组)
传送门:DISUBSTR 题意:给定一个字符串,求不相同的子串. 分析:对于每个sa[i]贡献n-a[i]个后缀,然后减去a[i]与a[i-1]的公共前缀height[i],则每个a[i]贡献n-sa ...
随机推荐
- springmvc-mvc:resource标签使用
转自:http://www.cnblogs.com/gzulmc/p/6746174.html <!-- 配置静态资源 --><mvc:resources location=&quo ...
- 在centOS 6.5下手动安装nginx1.9.x版本
第一步:首先安装Nginx的依赖环境 1.安装pcre-devel yum -y install pcre-devel #支持正则的pcre模块 比如安装 不然手动安装会报错 2.安 ...
- Swagger中添加Token验证
1.该连接链接到api中基本的swagge功能:http://www.cnblogs.com/hhhh2010/p/5234016.html 2.在swagger中使用验证(这里使用密码验证模式)ht ...
- week4_notebooke1
今日大纲:01名称空间,作用域,取值顺序02函数的嵌套03内置函数 globals() locals()04关键字global nonlocal05函数名的应用06闭包07装饰器初识08装饰器进阶 注 ...
- Vue模拟酷狗APP问题总结
一.NewSongs.vue中的38行 this.$http.get('/proxy/?json=true') 里面这个路径的获取 二.router文件夹中的index.js 中的 comp ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- DataReader相关知识点
C#中提供的DataReader可以从数据库中每次提取一条数据. 1. 获取数据的方式[1]DataReader 为在线操作数据, DataReader会一直占用SqlConnection连接,在其获 ...
- mysql+spring+mybatis实现数据库读写分离[代码配置] .
场景:一个读数据源一个读写数据源. 原理:借助spring的[org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource] ...
- soapUI检查webServices接口的方法以及对自动触发线程的查询
这几天需要熟悉接口传输过来的数据,因此会用到soapUI,但是没结果这个工具,然后百度了下,结合了下,下面是我对webservice在soapUI的展现: 1:其实说白了,就是我们不知道从接口里传输过 ...
- CDR X7正版优惠,3折来袭,好礼相送,行不行动?
意料之中的是,CorelDRAW系列软件在618期间成绩再次突破历史,成为新高.因为X7版本活动在6月15号的才上, 加之在此之前从没有过X7的活动优惠,势头之猛,可想而知,如此一来,官方预定的限量2 ...