这道题改了两天……

因为这道题和节点有关, 所以就用拆点法解决节点的容量问题。

节点拆成两个点, 连一条弧容量为1, 表示只能经过一次。

然后图中的弧容量无限。

然后求最小割, 即最大流, 即为答案。

固定一个源点, 然后枚举汇点, 然后求最小的最小割就ok了。

这里的拆点法连边的时候是拆出来的点连上原来的点。

同时起点是起点拆出来的点终点是原来的点, 因为这起点和终点是可以经过很多次

的。

所以总结一下拆点法(解决每个节点只能经过一次的问题)

(1)开始初始化每个点拆成两个点, 连一条弧, 容量为1

(2)连图中的变得时候拆出来的点连接原来的点, 容量无限

(3)求最大流时起点为原来起点的拆出来的点, 终点为本身


#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<queue>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 1123;
struct Edge
{
int from, to, cap, flow;
Edge(int from, int to, int cap, int flow) : from(from), to(to), cap(cap), flow(flow) {};
};
vector<Edge> edges;
vector<int> g[MAXN];
int h[MAXN], cur[MAXN];
int n, m, s, t; void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
} bool bfs()
{
queue<int> q;
memset(h, 0, sizeof(h));
h[s] = 1;
q.push(s); while(!q.empty())
{
int x = q.front(); q.pop();
REP(i, 0, g[x].size())
{
Edge& e = edges[g[x][i]];
if(e.cap > e.flow && !h[e.to])
{
h[e.to] = h[x] + 1;
q.push(e.to);
}
}
} return h[t];
} int dfs(int x, int a)
{
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < g[x].size(); i++)
{
Edge& e = edges[g[x][i]];
if(h[x] + 1 == h[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
{
flow += f;
edges[g[x][i] ^ 1].flow -= f;
e.flow += f;
if((a -= f) == 0) break;
}
}
return flow;
} int maxflow()
{
int ret = 0;
while(bfs()) memset(cur, 0, sizeof(cur)), ret += dfs(s, 1e9);
return ret;
} int main()
{
while(~scanf("%d%d", &n, &m))
{
edges.clear();
REP(i, 0, MAXN) g[i].clear();
REP(i, 0, n) AddEdge(i, i + n, 1); while(m--)
{
int u, v;
scanf(" (%d,%d)", &u, &v);
AddEdge(u + n, v, 1e9); AddEdge(v + n, u, 1e9);
} int ans = n; s = n;
for(t = 1; t < n; t++)
{
REP(i, 0, edges.size()) edges[i].flow = 0;
ans = min(ans, maxflow());
}
printf("%d\n", ans);
} return 0;
}

紫书 习题 11-4 UVa 1660 (网络流拆点法)的更多相关文章

  1. 紫书 习题 11-9 UVa 12549 (二分图最小点覆盖)

    用到了二分图的一些性质, 最大匹配数=最小点覆盖 貌似在白书上有讲 还不是很懂, 自己看着别人的博客用网络流写了一遍 反正以后学白书应该会系统学二分图的,紫书上没讲深. 目前就这样吧. #includ ...

  2. 紫书 习题 11-8 UVa 1663 (最大流求二分图最大基数匹配)

    很奇怪, 看到网上用的都是匈牙利算法求最大基数匹配 紫书上压根没讲这个算法, 而是用最大流求的. 难道是因为第一个人用匈牙利算法然后其他所有的博客都是看这个博客的吗? 很有可能-- 回归正题. 题目中 ...

  3. 紫书 习题8-12 UVa 1153(贪心)

    本来以为这道题是考不相交区间, 结果还专门复习了一遍前面写的, 然后发现这道题的区间是不是 固定的, 是在一个范围内"滑动的", 只要右端点不超过截止时间就ok. 然后我就先考虑有 ...

  4. 紫书 习题8-7 UVa 11925(构造法, 不需逆向)

    这道题的意思紫书上是错误的-- 难怪一开始我非常奇怪为什么第二个样例输出的是2, 按照紫书上的意思应该是22 然后就不管了,先写, 然后就WA了. 然后看了https://blog.csdn.net/ ...

  5. UVA 1658 海军上将(拆点法+最小费用限制流)

    海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...

  6. 紫书 习题 11-10 UVa 12264 (二分答案+最大流)

    书上写的是UVa 12011, 实际上是 12264 参考了https://blog.csdn.net/xl2015190026/article/details/51902823 这道题就是求出一种最 ...

  7. UVA 1594 Ducci Sequence(紫书习题5-2 简单模拟题)

    A Ducci sequence is a sequence of n-tuples of integers. Given an n-tuple of integers (a1, a2, · · · ...

  8. 紫书 习题7-8 UVa 12107 (IDA*)

    参考了这哥们的博客 https://blog.csdn.net/hyqsblog/article/details/46980287  (1)atoi可以char数组转int, 头文件 cstdlib ...

  9. 紫书 习题 11-16 UVa 1669(树形dp)

    想了很久, 以为是网络流最大流, 后来建模建不出来, 无奈. 后来看了 https://blog.csdn.net/hao_zong_yin/article/details/79441180 感觉思路 ...

随机推荐

  1. C# 基础复习 二 面向对象

    继承:子承父业  子:子类    父:父类    业:所有非私有成员 好处:代码的复用   继承后,实例化子类时,不止子类的构造,父类的构造也会执行,而且父类的构造先于子类的构造执行 即使在子类可以看 ...

  2. mySql 使用 SQL 文件脚本 failed to open file 注意事项

    1.路径不要有中文,其实最好是全英文 2.路径可以有空格 3.路径两头不要加引号 4.作为一个MySQL命令,source C:/lib/a.sql; 后边的分号是要的. 5.使用 unix 路径风格 ...

  3. pytorch实战(2)-----回归例子

    一.回归任务介绍: 拟合一个二元函数 y = x ^ 2. 二.步骤: 导入包 创建数据 构建网络 设置优化器和损失函数 前向和后向传播训练网络 画图 三.代码: 导入包: import torch ...

  4. jquery中的jsonp跨域调用

                                                    jquery jsonp跨域调用接口

  5. async、await 优缺点

    async.await 优缺点 async 和 await 相比直接使用 Promise 来说,优势在于处理 then 的调用链,能够更清晰准确的写出代码.缺点在于滥用 await 可能会导致性能问题 ...

  6. spring security中当前用户信息

    1:如果在jsp页面中获取可以使用spring security的标签库 在页面中引入标签   1 <%@ taglib prefix="sec" uri="htt ...

  7. windows下使用libsvm3.2

    一.官方介绍 libsvm主页:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html libsvm介绍文档:http://www.csie.ntu. ...

  8. hdu5389(DP)

    题意: 给出n个人的id,有两个门,每一个门有一个标号.我们记作a和b,如今我们要将n个人分成两组,进入两个门中,使得两部分人的标号的和(迭代的求,直至变成一位数.我们姑且叫做求"和&quo ...

  9. 中科燕园arcgis外包案例之12---供水供热管线GIS系统

    项目背景 绍兴县是浙江省第一个"数字城管"试点城市,也是全国第一个"数字城管"县级城市.随着经济的飞速发展.城市化步伐的加快,以及城市规模的扩大和现代化程度的不 ...

  10. Coding上部署Ghost博客

    Ghost构建于Node.js平台之上.支持0.10.*版本号的Node.js. 在你的本地计算机上执行Ghost事实上非常easy,前提是你已经安装了Node.js. 什么是Node.js? 略过 ...