Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in modern mathematics, in the sense of a theory invoked to justify assumptions made inmathematics concerning the existence of mathematical objects (such as numbers or functions) and their properties. Formal versions of set theory also have a foundational role to play as specifying a theoretical ideal of mathematical rigor in proofs.”

Given this importance of sets, being the basis of mathematics, a set of eccentric theorist set off to construct a supercomputer operating on sets instead of numbers. The initial Set-Stack Alpha is under construction, and they need you to simulate it in order to verify the operation of the prototype.

The computer operates on a single stack of sets, which is initially empty. After each operation, the cardinality of the topmost set on the stack is output. The cardinality of a set S is denoted |S| and is the number of elements in S. The instruction set of the SetStack Alpha is PUSH, DUP, UNION, INTERSECT, and ADD.

PUSH will push the empty set {} on the stack.

DUP will duplicate the topmost set (pop the stack, and then push that set on the stack twice).

UNION will pop the stack twice and then push the union of the two sets on the stack.

INTERSECT will pop the stack twice and then push the intersection of the two sets on the stack.

ADD will pop the stack twice, add the first set to the second one, and then push the resulting set on the stack.

For illustration purposes, assume that the topmost element of the stack is

A = {{}, {{}}}

and that the next one is

B = {{}, {{{}}}}.

For these sets, we have |A| = 2 and |B| = 2. Then:

◎ UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.

◎ INTERSECT would result in the set { {} }. The output is 1.

◎ ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.
Input

An integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of test cases. The first line of each test case contains the number of operations 0 ≤ N ≤ 2 000. Then follow N lines each containing one of the five commands. It is guaranteed that the SetStack computer can execute all the commands in the sequence without ever popping an empty stack.
Output

For each operation specified in the input, there will be one line of output consisting of a single integer. This integer is the cardinality of the topmost element of the stack after the corresponding command has executed. After each test case there will be a line with *** (three asterisks).
Examples
Input

2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT

Output

0
0
1
0
1
1
2
2
2
***
0
0
1
0
0
***


 #include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <stack>
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
using namespace std;
typedef set<int> Set;
map<Set,int> IDcache;
vector<Set> Setcache;
int ID(Set x){
if(IDcache.count(x)) return IDcache[x];
Setcache.push_back(x);
return IDcache[x]=Setcache.size()-;
}
int main()
{
int n,ord;cin>>n;
stack<int> s;
while(n--){
cin>>ord;
while(ord--){
string op;
cin>>op;
if(op[]=='P') s.push(ID(Set()));
else if(op[]=='D') s.push(s.top());
else{
Set x1=Setcache[s.top()];s.pop();
Set x2=Setcache[s.top()];s.pop();
Set x;
switch(op[]){
case 'U': set_union(ALL(x1),ALL(x2),INS(x));break;
case 'I': set_intersection(ALL(x1),ALL(x2),INS(x));break;
case 'A': x=x2;x.insert(ID(x1));break;
}
s.push(ID(x));
}
cout << Setcache[s.top()].size()<<endl;
}
cout<<"***"<<endl; } return ;
}

本题的集合并不是简单的整数集合或字符串集合,而是集合的集合。map为每个不同的集合分配一个唯一的ID,每个key的value是key这个集合的ID,每个集合都可以表示成所包含元素的ID集合,这样就可以用set<int>表示,而整个栈则是一个stack<int>,每一次将集合的ID推入。vec数组方便根据ID取集合。

26行的ID(Set())应该是空集的ID,为0。

举个例子,

第一次PUSH,ID()为空集分配ID——0,并保存入map中,栈推入空集的ID:0;

第二次DUP,将栈顶的集合ID:0再推入栈;

第三次ADD,出栈两个元素,都是空集,ID均为0,将第一个集合加入第二个集合里,即是将第一个集合ID插入到第二个集合中,并给新集合:{0}分配ID——1;并将新集合ID推入栈。则栈顶集合ID:1,集合内元素{0},元素个数:1。

第一次 map:{} 0         vector [0]: 空          stack:0

第二次 map:{} 0         vector [0]: 空          stack:0 0

第三次 map:{} 0,{0},1     vector [0]: 空,[1]:{0}        stack:0 0 1

感觉说的还不是很清楚,多读代码理解吧!

EOJ 1641/UVa The SetStack Computer的更多相关文章

  1. UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用)

    UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用) 题意分析 绝对的好题. 先说做完此题的收获: 1.对数据结构又有了宏观的上的认识; 2.熟悉了常用STL ...

  2. 12096 - The SetStack Computer UVA

    Background from Wikipedia: \Set theory is a branch of mathematics created principally by the German ...

  3. UVa12096.The SetStack Computer

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. 集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096)

    集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096) 题目描述 有一个专门为了集合运算而设计的"集合栈"计算机.该 ...

  5. UVA12096 - The SetStack Computer(set + map映射)

    UVA12096 - The SetStack Computer(set + map映射) 题目链接 题目大意:有五个动作: push : 把一个空集合{}放到栈顶. dup : 把栈顶的集合取出来, ...

  6. uva 12096 - The SetStack Computer(集合栈)

    例题5-5 集合栈计算机(The Set Stack Computer,ACM/ICPC NWERC 2006,UVa12096) 有一个专门为了集合运算而设计的"集合栈"计算机. ...

  7. uva 12096 The SetStack Computer

    点击打开链接uva 12096 思路: STL模拟 分析: 1 题目给定5种操作,每次输出栈顶集合的元素的个数 2 利用stack和set来模拟,set保存集合的元素.遇到push的时候直接在stac ...

  8. UVa 12096 The SetStack Computer【STL】

    题意:给出一个空的栈,支持集合的操作,求每次操作后,栈顶集合的元素个数 从紫书给的例子 A={{},{{}}} B={{},{{{}}}} A是栈顶元素,A是一个集合,同时作为一个集合的A,它自身里面 ...

  9. UVa 12096 (STL) The SetStack Computer

    题意: 有一个集合栈计算机,栈中的元素全部是集合,还有一些相关的操作.输出每次操作后栈顶集合元素的个数. 分析: 这个题感觉有点抽象,集合还能套集合,倒是和题中配的套娃那个图很贴切. 把集合映射成ID ...

随机推荐

  1. JS高级——封装注册事件

    兼容性问题 1.ele.on事件类型 = function(){}一个元素ele注册一种事件多次,会被替换成最后一个,所以有局限性 2.addEventListener(事件类型,事件处理函数,use ...

  2. dubbo之路由规则

    向注册中心写入路由规则:(通常由监控中心或治理中心的页面完成) RegistryFactory registryFactory = ExtensionLoader.getExtensionLoader ...

  3. C# 获得固定年月日

    /// <summary> /// 获得固定年月日,时和分不固定 : 2019-01-01 00:00:00 /// </summary> /// <returns> ...

  4. mvc 类中对应数据库属性

    [StringLength()] //可空 对应数据库可空 [DefaultValue("")] [DisplayName("添加人用户名")] public ...

  5. forcedirectories和CreateDirectory

    forcedirectories和CreateDirectory都能创建文件ForceDirectories可以创建多层目录. 如果你创建一个目录为c:\mymusic\music 如果你的C盘不存在 ...

  6. gcc和gdb的基本操作

    gcc和gdb yum 在线安装软件,使用阿里云镜像站,OPSX 选择你安装的系统 点帮助 查看配置命令行 yum --list | grep gdb #查找要安装的软件 yum install -y ...

  7. 基本数据类型:字符串(str)

    一.字符串的定义和创建 字符串是一个有序的字符的集合,用于存储和表示基本的文本信息,' '或'' ''或''' '''中间包含的内容称之为字符串,总之加了引号的字符都被认为是字符串! 创建: > ...

  8. nyoj_37_回文字符串_201403121649

    回文字符串 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba".当 ...

  9. Spring——BeanFactory

    Spring容器 什么是Spring容器 Spring容器是Spring的核心,它可以创建对象,把他们关联在一起,配置各个对象,并管理每个对象的整个生命周期.Spring容器使用依赖注入(DI)来管理 ...

  10. N天学习一个Linux命令之free

    用途 查看系统内存(物理/虚拟/缓存/共享)使用情况 用法 free [-b | -k | -m | -g | -h] [-o] [-s delay ] [-c count ] [-a] [-t] [ ...