EOJ 1641/UVa The SetStack Computer
Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in modern mathematics, in the sense of a theory invoked to justify assumptions made inmathematics concerning the existence of mathematical objects (such as numbers or functions) and their properties. Formal versions of set theory also have a foundational role to play as specifying a theoretical ideal of mathematical rigor in proofs.”
Given this importance of sets, being the basis of mathematics, a set of eccentric theorist set off to construct a supercomputer operating on sets instead of numbers. The initial Set-Stack Alpha is under construction, and they need you to simulate it in order to verify the operation of the prototype.
The computer operates on a single stack of sets, which is initially empty. After each operation, the cardinality of the topmost set on the stack is output. The cardinality of a set S is denoted |S| and is the number of elements in S. The instruction set of the SetStack Alpha is PUSH, DUP, UNION, INTERSECT, and ADD.
PUSH will push the empty set {} on the stack.
DUP will duplicate the topmost set (pop the stack, and then push that set on the stack twice).
UNION will pop the stack twice and then push the union of the two sets on the stack.
INTERSECT will pop the stack twice and then push the intersection of the two sets on the stack.
ADD will pop the stack twice, add the first set to the second one, and then push the resulting set on the stack.
For illustration purposes, assume that the topmost element of the stack is
A = {{}, {{}}}
and that the next one is
B = {{}, {{{}}}}.
For these sets, we have |A| = 2 and |B| = 2. Then:
◎ UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.
◎ INTERSECT would result in the set { {} }. The output is 1.
◎ ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.
Input
An integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of test cases. The first line of each test case contains the number of operations 0 ≤ N ≤ 2 000. Then follow N lines each containing one of the five commands. It is guaranteed that the SetStack computer can execute all the commands in the sequence without ever popping an empty stack.
Output
For each operation specified in the input, there will be one line of output consisting of a single integer. This integer is the cardinality of the topmost element of the stack after the corresponding command has executed. After each test case there will be a line with *** (three asterisks).
Examples
Input
2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT
Output
0
0
1
0
1
1
2
2
2
***
0
0
1
0
0
***
#include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <stack>
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
using namespace std;
typedef set<int> Set;
map<Set,int> IDcache;
vector<Set> Setcache;
int ID(Set x){
if(IDcache.count(x)) return IDcache[x];
Setcache.push_back(x);
return IDcache[x]=Setcache.size()-;
}
int main()
{
int n,ord;cin>>n;
stack<int> s;
while(n--){
cin>>ord;
while(ord--){
string op;
cin>>op;
if(op[]=='P') s.push(ID(Set()));
else if(op[]=='D') s.push(s.top());
else{
Set x1=Setcache[s.top()];s.pop();
Set x2=Setcache[s.top()];s.pop();
Set x;
switch(op[]){
case 'U': set_union(ALL(x1),ALL(x2),INS(x));break;
case 'I': set_intersection(ALL(x1),ALL(x2),INS(x));break;
case 'A': x=x2;x.insert(ID(x1));break;
}
s.push(ID(x));
}
cout << Setcache[s.top()].size()<<endl;
}
cout<<"***"<<endl; } return ;
}
本题的集合并不是简单的整数集合或字符串集合,而是集合的集合。map为每个不同的集合分配一个唯一的ID,每个key的value是key这个集合的ID,每个集合都可以表示成所包含元素的ID集合,这样就可以用set<int>表示,而整个栈则是一个stack<int>,每一次将集合的ID推入。vec数组方便根据ID取集合。
26行的ID(Set())应该是空集的ID,为0。
举个例子,
第一次PUSH,ID()为空集分配ID——0,并保存入map中,栈推入空集的ID:0;
第二次DUP,将栈顶的集合ID:0再推入栈;
第三次ADD,出栈两个元素,都是空集,ID均为0,将第一个集合加入第二个集合里,即是将第一个集合ID插入到第二个集合中,并给新集合:{0}分配ID——1;并将新集合ID推入栈。则栈顶集合ID:1,集合内元素{0},元素个数:1。
第一次 map:{} 0 vector [0]: 空 stack:0
第二次 map:{} 0 vector [0]: 空 stack:0 0
第三次 map:{} 0,{0},1 vector [0]: 空,[1]:{0} stack:0 0 1
感觉说的还不是很清楚,多读代码理解吧!
EOJ 1641/UVa The SetStack Computer的更多相关文章
- UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用)
UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用) 题意分析 绝对的好题. 先说做完此题的收获: 1.对数据结构又有了宏观的上的认识; 2.熟悉了常用STL ...
- 12096 - The SetStack Computer UVA
Background from Wikipedia: \Set theory is a branch of mathematics created principally by the German ...
- UVa12096.The SetStack Computer
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096)
集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096) 题目描述 有一个专门为了集合运算而设计的"集合栈"计算机.该 ...
- UVA12096 - The SetStack Computer(set + map映射)
UVA12096 - The SetStack Computer(set + map映射) 题目链接 题目大意:有五个动作: push : 把一个空集合{}放到栈顶. dup : 把栈顶的集合取出来, ...
- uva 12096 - The SetStack Computer(集合栈)
例题5-5 集合栈计算机(The Set Stack Computer,ACM/ICPC NWERC 2006,UVa12096) 有一个专门为了集合运算而设计的"集合栈"计算机. ...
- uva 12096 The SetStack Computer
点击打开链接uva 12096 思路: STL模拟 分析: 1 题目给定5种操作,每次输出栈顶集合的元素的个数 2 利用stack和set来模拟,set保存集合的元素.遇到push的时候直接在stac ...
- UVa 12096 The SetStack Computer【STL】
题意:给出一个空的栈,支持集合的操作,求每次操作后,栈顶集合的元素个数 从紫书给的例子 A={{},{{}}} B={{},{{{}}}} A是栈顶元素,A是一个集合,同时作为一个集合的A,它自身里面 ...
- UVa 12096 (STL) The SetStack Computer
题意: 有一个集合栈计算机,栈中的元素全部是集合,还有一些相关的操作.输出每次操作后栈顶集合元素的个数. 分析: 这个题感觉有点抽象,集合还能套集合,倒是和题中配的套娃那个图很贴切. 把集合映射成ID ...
随机推荐
- css的基本单词
<border>边框 border边框 <text>文本 text文本 <indent>缩进 indent缩进 <align>对齐方式 align对齐方 ...
- THREE.js代码备份——webgl - geometry - dynamic(模拟海浪,通过时间(毫秒)来控制平面点的运动模拟海浪,鼠标控制写在另外的js中)
HTML: <!DOCTYPE html> <html lang="en"> <head> <title>three.js webg ...
- mysql5.7初始化密码报错ERROR1820(HY000):YoumustresetyourpasswordusingALTERUSERstateme
1,mysql5.6是密码为空直接进入数据库的,但是mysql5.7就需要初始密码 cat /var/log/mysqld.log | grep password 或者:grep 'temporary ...
- charAt 写一个反序函数
function reverStr(str){ var tmpStr = ""; for(var i=str.length-1;i>=0;i--){ tmpStr += st ...
- 使用MySQL Yum存储库的快速指南【mysql官方文档】
使用MySQL Yum存储库的快速指南 抽象 MySQL Yum存储库提供用于在Linux平台上安装MySQL服务器,客户端和其他组件的RPM包.这些软件包还可以升级和替换从Linux发行版本机软件存 ...
- springboot配置多数据源(JdbcTemplate方式)
在实际开发中可能会遇到需要配置多个数据源的情况,比如:需要使用多个host.需要使用多种数据库(MySql.Oracle.SqlServer…) 如果使用springboot开发,可做如下配置: Co ...
- 【上海站】EOLINKER 用户培训之旅,等你来共建API新连接
从今年3月4日起,EOLINKER AMS 团队将再次开启全国用户培训之旅.本次全国培训之旅依旧将覆盖北上广深等国内主要城市,重点提供两种服务内容,一是 对 EOLINKER 产品的交流,包括 API ...
- 爬虫之cookie
什么是cookie: 在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是为了解决这个问题,第一次登 ...
- 【JAVA】简陋的学生信息管理系统
因为之前写了一个学生信息管理系统,但还是处于命令行界面,不美观,于是打算做一个完整的界面出来. 在网上查阅资料后发现C++本身是不支持图形化界面的(可以使用第三方的Qt来做) 权衡之下还是选择了JAV ...
- css3 background-clip和background-origin 区别
在css3中,background-clip和background-origin它们2个的功能大致相同,但又有些细微差别. 1.background-clip:规定背景的绘制区域,当背景是纯颜色时与图 ...