EOJ 1641/UVa The SetStack Computer
Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in modern mathematics, in the sense of a theory invoked to justify assumptions made inmathematics concerning the existence of mathematical objects (such as numbers or functions) and their properties. Formal versions of set theory also have a foundational role to play as specifying a theoretical ideal of mathematical rigor in proofs.”
Given this importance of sets, being the basis of mathematics, a set of eccentric theorist set off to construct a supercomputer operating on sets instead of numbers. The initial Set-Stack Alpha is under construction, and they need you to simulate it in order to verify the operation of the prototype.
The computer operates on a single stack of sets, which is initially empty. After each operation, the cardinality of the topmost set on the stack is output. The cardinality of a set S is denoted |S| and is the number of elements in S. The instruction set of the SetStack Alpha is PUSH, DUP, UNION, INTERSECT, and ADD.
PUSH will push the empty set {} on the stack.
DUP will duplicate the topmost set (pop the stack, and then push that set on the stack twice).
UNION will pop the stack twice and then push the union of the two sets on the stack.
INTERSECT will pop the stack twice and then push the intersection of the two sets on the stack.
ADD will pop the stack twice, add the first set to the second one, and then push the resulting set on the stack.
For illustration purposes, assume that the topmost element of the stack is
A = {{}, {{}}}
and that the next one is
B = {{}, {{{}}}}.
For these sets, we have |A| = 2 and |B| = 2. Then:
◎ UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.
◎ INTERSECT would result in the set { {} }. The output is 1.
◎ ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.
Input
An integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of test cases. The first line of each test case contains the number of operations 0 ≤ N ≤ 2 000. Then follow N lines each containing one of the five commands. It is guaranteed that the SetStack computer can execute all the commands in the sequence without ever popping an empty stack.
Output
For each operation specified in the input, there will be one line of output consisting of a single integer. This integer is the cardinality of the topmost element of the stack after the corresponding command has executed. After each test case there will be a line with *** (three asterisks).
Examples
Input
2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT
Output
0
0
1
0
1
1
2
2
2
***
0
0
1
0
0
***
#include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <stack>
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
using namespace std;
typedef set<int> Set;
map<Set,int> IDcache;
vector<Set> Setcache;
int ID(Set x){
if(IDcache.count(x)) return IDcache[x];
Setcache.push_back(x);
return IDcache[x]=Setcache.size()-;
}
int main()
{
int n,ord;cin>>n;
stack<int> s;
while(n--){
cin>>ord;
while(ord--){
string op;
cin>>op;
if(op[]=='P') s.push(ID(Set()));
else if(op[]=='D') s.push(s.top());
else{
Set x1=Setcache[s.top()];s.pop();
Set x2=Setcache[s.top()];s.pop();
Set x;
switch(op[]){
case 'U': set_union(ALL(x1),ALL(x2),INS(x));break;
case 'I': set_intersection(ALL(x1),ALL(x2),INS(x));break;
case 'A': x=x2;x.insert(ID(x1));break;
}
s.push(ID(x));
}
cout << Setcache[s.top()].size()<<endl;
}
cout<<"***"<<endl; } return ;
}
本题的集合并不是简单的整数集合或字符串集合,而是集合的集合。map为每个不同的集合分配一个唯一的ID,每个key的value是key这个集合的ID,每个集合都可以表示成所包含元素的ID集合,这样就可以用set<int>表示,而整个栈则是一个stack<int>,每一次将集合的ID推入。vec数组方便根据ID取集合。
26行的ID(Set())应该是空集的ID,为0。
举个例子,
第一次PUSH,ID()为空集分配ID——0,并保存入map中,栈推入空集的ID:0;
第二次DUP,将栈顶的集合ID:0再推入栈;
第三次ADD,出栈两个元素,都是空集,ID均为0,将第一个集合加入第二个集合里,即是将第一个集合ID插入到第二个集合中,并给新集合:{0}分配ID——1;并将新集合ID推入栈。则栈顶集合ID:1,集合内元素{0},元素个数:1。
第一次 map:{} 0 vector [0]: 空 stack:0
第二次 map:{} 0 vector [0]: 空 stack:0 0
第三次 map:{} 0,{0},1 vector [0]: 空,[1]:{0} stack:0 0 1
感觉说的还不是很清楚,多读代码理解吧!
EOJ 1641/UVa The SetStack Computer的更多相关文章
- UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用)
UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用) 题意分析 绝对的好题. 先说做完此题的收获: 1.对数据结构又有了宏观的上的认识; 2.熟悉了常用STL ...
- 12096 - The SetStack Computer UVA
Background from Wikipedia: \Set theory is a branch of mathematics created principally by the German ...
- UVa12096.The SetStack Computer
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096)
集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096) 题目描述 有一个专门为了集合运算而设计的"集合栈"计算机.该 ...
- UVA12096 - The SetStack Computer(set + map映射)
UVA12096 - The SetStack Computer(set + map映射) 题目链接 题目大意:有五个动作: push : 把一个空集合{}放到栈顶. dup : 把栈顶的集合取出来, ...
- uva 12096 - The SetStack Computer(集合栈)
例题5-5 集合栈计算机(The Set Stack Computer,ACM/ICPC NWERC 2006,UVa12096) 有一个专门为了集合运算而设计的"集合栈"计算机. ...
- uva 12096 The SetStack Computer
点击打开链接uva 12096 思路: STL模拟 分析: 1 题目给定5种操作,每次输出栈顶集合的元素的个数 2 利用stack和set来模拟,set保存集合的元素.遇到push的时候直接在stac ...
- UVa 12096 The SetStack Computer【STL】
题意:给出一个空的栈,支持集合的操作,求每次操作后,栈顶集合的元素个数 从紫书给的例子 A={{},{{}}} B={{},{{{}}}} A是栈顶元素,A是一个集合,同时作为一个集合的A,它自身里面 ...
- UVa 12096 (STL) The SetStack Computer
题意: 有一个集合栈计算机,栈中的元素全部是集合,还有一些相关的操作.输出每次操作后栈顶集合元素的个数. 分析: 这个题感觉有点抽象,集合还能套集合,倒是和题中配的套娃那个图很贴切. 把集合映射成ID ...
随机推荐
- html中设置浏览器解码方式
通过添加一行标签: <meta http-equiv="Content-Type" content="text/html; charset=utf-8"& ...
- c++中std::set自定义去重和排序函数
c++中的std::set,是基于红黑树的平衡二叉树的数据结构实现的一种容器,因为其中所包含的元素的值是唯一的,因此主要用于去重和排序.这篇文章的目的在于探讨和分享如何正确使用std::set实现去重 ...
- Caffe2:段错误(核心 已转储)
测试Caffe的时候, cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && ech ...
- STL_string用法总结
参考自:http://blog.csdn.net/y990041769/article/details/8763366 1:string对象的定义和初始化以及读写 string s1; 默认 ...
- sqlserver 2014 删除主键约束
truncate table menu SELECT * FROM sys.foreign_keys WHERE referenced_object_id=OBJECT_ID('menu'); --找 ...
- 使用ScriptManager服务器控件前后台数据交互
前台页面信息: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebFor ...
- 让System.Drawing.Bitmap可以在linux运行
.net core的bitmap使用的是以下类库,但无法在linux运行 https://github.com/CoreCompat/CoreCompat 在linux运行需要安装runtime.li ...
- js案例分析
名字取的高大上,其实只是我平时上网浏览遇到的一些我感觉还不错的小题目,再加上我或者是我在网上找到的一些理解,就保存到这里了. 2019/4/2 最新开了个新坑,是一个javascipt30的一些案例 ...
- IDEA 基本配置
idea使用基本配置 1配置JDK开发环境 File->project structure: 2取消自动更新 file->setting:Appearance &Behavior下 ...
- hadoop手工移块
1.关于磁盘使用策略,介绍参考http://www.it165.net/admin/html/201410/3860.html 在hadoop2.0中,datanode数据副本存放磁盘选择策略有两种方 ...