Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in modern mathematics, in the sense of a theory invoked to justify assumptions made inmathematics concerning the existence of mathematical objects (such as numbers or functions) and their properties. Formal versions of set theory also have a foundational role to play as specifying a theoretical ideal of mathematical rigor in proofs.”

Given this importance of sets, being the basis of mathematics, a set of eccentric theorist set off to construct a supercomputer operating on sets instead of numbers. The initial Set-Stack Alpha is under construction, and they need you to simulate it in order to verify the operation of the prototype.

The computer operates on a single stack of sets, which is initially empty. After each operation, the cardinality of the topmost set on the stack is output. The cardinality of a set S is denoted |S| and is the number of elements in S. The instruction set of the SetStack Alpha is PUSH, DUP, UNION, INTERSECT, and ADD.

PUSH will push the empty set {} on the stack.

DUP will duplicate the topmost set (pop the stack, and then push that set on the stack twice).

UNION will pop the stack twice and then push the union of the two sets on the stack.

INTERSECT will pop the stack twice and then push the intersection of the two sets on the stack.

ADD will pop the stack twice, add the first set to the second one, and then push the resulting set on the stack.

For illustration purposes, assume that the topmost element of the stack is

A = {{}, {{}}}

and that the next one is

B = {{}, {{{}}}}.

For these sets, we have |A| = 2 and |B| = 2. Then:

◎ UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.

◎ INTERSECT would result in the set { {} }. The output is 1.

◎ ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.
Input

An integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of test cases. The first line of each test case contains the number of operations 0 ≤ N ≤ 2 000. Then follow N lines each containing one of the five commands. It is guaranteed that the SetStack computer can execute all the commands in the sequence without ever popping an empty stack.
Output

For each operation specified in the input, there will be one line of output consisting of a single integer. This integer is the cardinality of the topmost element of the stack after the corresponding command has executed. After each test case there will be a line with *** (three asterisks).
Examples
Input

2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT

Output

0
0
1
0
1
1
2
2
2
***
0
0
1
0
0
***


 #include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <stack>
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
using namespace std;
typedef set<int> Set;
map<Set,int> IDcache;
vector<Set> Setcache;
int ID(Set x){
if(IDcache.count(x)) return IDcache[x];
Setcache.push_back(x);
return IDcache[x]=Setcache.size()-;
}
int main()
{
int n,ord;cin>>n;
stack<int> s;
while(n--){
cin>>ord;
while(ord--){
string op;
cin>>op;
if(op[]=='P') s.push(ID(Set()));
else if(op[]=='D') s.push(s.top());
else{
Set x1=Setcache[s.top()];s.pop();
Set x2=Setcache[s.top()];s.pop();
Set x;
switch(op[]){
case 'U': set_union(ALL(x1),ALL(x2),INS(x));break;
case 'I': set_intersection(ALL(x1),ALL(x2),INS(x));break;
case 'A': x=x2;x.insert(ID(x1));break;
}
s.push(ID(x));
}
cout << Setcache[s.top()].size()<<endl;
}
cout<<"***"<<endl; } return ;
}

本题的集合并不是简单的整数集合或字符串集合,而是集合的集合。map为每个不同的集合分配一个唯一的ID,每个key的value是key这个集合的ID,每个集合都可以表示成所包含元素的ID集合,这样就可以用set<int>表示,而整个栈则是一个stack<int>,每一次将集合的ID推入。vec数组方便根据ID取集合。

26行的ID(Set())应该是空集的ID,为0。

举个例子,

第一次PUSH,ID()为空集分配ID——0,并保存入map中,栈推入空集的ID:0;

第二次DUP,将栈顶的集合ID:0再推入栈;

第三次ADD,出栈两个元素,都是空集,ID均为0,将第一个集合加入第二个集合里,即是将第一个集合ID插入到第二个集合中,并给新集合:{0}分配ID——1;并将新集合ID推入栈。则栈顶集合ID:1,集合内元素{0},元素个数:1。

第一次 map:{} 0         vector [0]: 空          stack:0

第二次 map:{} 0         vector [0]: 空          stack:0 0

第三次 map:{} 0,{0},1     vector [0]: 空,[1]:{0}        stack:0 0 1

感觉说的还不是很清楚,多读代码理解吧!

EOJ 1641/UVa The SetStack Computer的更多相关文章

  1. UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用)

    UVA.12096 The SetStack Computer ( 好题 栈 STL混合应用) 题意分析 绝对的好题. 先说做完此题的收获: 1.对数据结构又有了宏观的上的认识; 2.熟悉了常用STL ...

  2. 12096 - The SetStack Computer UVA

    Background from Wikipedia: \Set theory is a branch of mathematics created principally by the German ...

  3. UVa12096.The SetStack Computer

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. 集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096)

    集合栈计算机(The SetStack Computer, ACM/ICPC NWERC 2006,Uva12096) 题目描述 有一个专门为了集合运算而设计的"集合栈"计算机.该 ...

  5. UVA12096 - The SetStack Computer(set + map映射)

    UVA12096 - The SetStack Computer(set + map映射) 题目链接 题目大意:有五个动作: push : 把一个空集合{}放到栈顶. dup : 把栈顶的集合取出来, ...

  6. uva 12096 - The SetStack Computer(集合栈)

    例题5-5 集合栈计算机(The Set Stack Computer,ACM/ICPC NWERC 2006,UVa12096) 有一个专门为了集合运算而设计的"集合栈"计算机. ...

  7. uva 12096 The SetStack Computer

    点击打开链接uva 12096 思路: STL模拟 分析: 1 题目给定5种操作,每次输出栈顶集合的元素的个数 2 利用stack和set来模拟,set保存集合的元素.遇到push的时候直接在stac ...

  8. UVa 12096 The SetStack Computer【STL】

    题意:给出一个空的栈,支持集合的操作,求每次操作后,栈顶集合的元素个数 从紫书给的例子 A={{},{{}}} B={{},{{{}}}} A是栈顶元素,A是一个集合,同时作为一个集合的A,它自身里面 ...

  9. UVa 12096 (STL) The SetStack Computer

    题意: 有一个集合栈计算机,栈中的元素全部是集合,还有一些相关的操作.输出每次操作后栈顶集合元素的个数. 分析: 这个题感觉有点抽象,集合还能套集合,倒是和题中配的套娃那个图很贴切. 把集合映射成ID ...

随机推荐

  1. [Windows Server 2012] 手工创建安全网站

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:手工创建安全站 ...

  2. [Windows Server 2012] MySQL安全加固

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:MySQL ...

  3. 认识 java JVM虚拟机选项 Xms Xmx PermSize MaxPermSize 区别

    点击window---->preferences---->配置的tomcat---->JDK,在Optional Java VM arguments:中输入 -Xmx512M -Xm ...

  4. struts2.5.2 通配符问题_亲测有用

    学了一段时间struts2,跟着教程做,但发现struts2的版本不同,很多东西的使用是有差异的.例如之前遇到的创建sessionFactory的方式就跟之前版本有着明显的差异.今天又遇到一个问题,那 ...

  5. 解决 The file will have its original line endings in your working directory

    首先出现这个问题主要原因是:我们从别人github地址上通过git clone下载下来,而又想git push到我们自己的github上,那么就会出现上面提示的错误信息 此时需要执行如下代码: git ...

  6. js的加法操作表

    Number + Number -> 加法 Boolean + Number -> 加法 Boolean + Boolean -> 加法 Number + String -> ...

  7. zabbix_agent自动发现服务端口

    应用背景:       zabbix监控系统介绍及安装,参考大牛运维生存时间,在这儿就不啰嗦了 为了zabbix-agent端能自动把服务器端的服务端口汇报给 zabbix server端,监控其端口 ...

  8. kvm virt-install 使用小结

    简介: virt-install 能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装. 此外,它能够基于串行控制台.VNC或SDL支持文本或图 ...

  9. cmake更新版本简记

    问题描述: 由于需求,要在服务器上安装ANTs(Advanced Normalization Tools).然而最新版的ANTs需要下载源码并用cmake编译, 于是根据https://github. ...

  10. 1. Python中的基本数据类型、运算、变量

    本文利用的是Python 3.x版本,建议学习3.x版本 Python中的基本数据类型.运算.变量 1. 基本数据类型 1.1 整数 py可以处理任意大小的整数,例如123,1234567891324 ...