把握linux内核设计思想(三):下半部机制之软中断
中断处理程序以异步方式执行,其会打断其它重要代码,其执行时该中断同级的其它中断会被屏蔽,而且当前处理器上全部其它中断都有可能会被屏蔽掉,还有中断处理程序不能堵塞,所以中断处理须要尽快结束。因为中断处理程序的这些缺陷,导致了中断处理程序仅仅是整个硬件中断处理流程的一部分,对于那些对时间要求不高的任务。留给中断处理流程的另外一部分,也就是本节要讲的中断处理流程的下半部。
一般对时间很敏感、和硬件相关、要保证不被其他中断(特别是同样的中断)打断的这些任务放在中断处理程序中运行。其他任务考虑放在下半部运行。
asmlinkage void __init start_kernel(void)
{
char * command_line;
extern struct kernel_param __start___param[], __stop___param[]; smp_setup_processor_id();
......
softirq_init();//初始化软中断
...... /* Do the rest non-__init'ed, we're now alive */
rest_init();
}
void __init softirq_init(void)
{
int cpu; for_each_possible_cpu(cpu) {
int i; per_cpu(tasklet_vec, cpu).tail =
&per_cpu(tasklet_vec, cpu).head;
per_cpu(tasklet_hi_vec, cpu).tail =
&per_cpu(tasklet_hi_vec, cpu).head;
for (i = 0; i < NR_SOFTIRQS; i++)
INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu));
} register_hotcpu_notifier(&remote_softirq_cpu_notifier); //此处注冊两个软中断
open_softirq(TASKLET_SOFTIRQ, tasklet_action); open_softirq(HI_SOFTIRQ, tasklet_hi_action);
}
nr:软中断类型 action:软中断处理函数
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
softirq_vec[nr].action = action;
}
struct softirq_action
{
void (*action)(struct softirq_action *);
}
static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp;
从上面的代码中,我们能够看到:open_softirq()中.事实上就是对softirq_vec数组的nr项赋值.softirq_vec是一个32元素的数组,实际上linux内核仅仅使用了几项:
/* PLEASE, avoid to allocate new softirqs, if you need not _really_ high
frequency threaded job scheduling. For almost all the purposes
tasklets are more than enough. F.e. all serial device BHs et
al. should be converted to tasklets, not to softirqs.
*/ enum
{
HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */ NR_SOFTIRQS
};
有关网络子系统内容可參考文章:http://blog.csdn.net/shallnet/article/details/26269781
asmlinkage void do_softirq(void) { __u32 pending; unsigned long flags; //假设在硬件中断环境中就退出,软中断不能够在硬件中断上下文或者是在软中断环境中使用,使用in_interrupt()来防止软中断嵌套。和抢占硬中断环境。
if (in_interrupt()) return; //禁止本地中断 local_irq_save(flags); pending = local_softirq_pending();
//假设有软中断要处理,则进入__do_softirq()
if (pending) __do_softirq(); local_irq_restore(flags);
asmlinkage void __do_softirq(void)
{
struct softirq_action *h;
__u32 pending;
int max_restart = MAX_SOFTIRQ_RESTART;
int cpu; pending = local_softirq_pending(); //pending用于保留待处理软中断32位位图
account_system_vtime(current); __local_bh_disable((unsigned long)__builtin_return_address(0));
lockdep_softirq_enter(); cpu = smp_processor_id();
restart:
/* Reset the pending bitmask before enabling irqs */
set_softirq_pending(0); local_irq_enable(); h = softirq_vec; do {
if (pending & 1) { //假设pending第n位被设置为1,那么处理第n位相应类型的软中断
int prev_count = preempt_count();
kstat_incr_softirqs_this_cpu(h - softirq_vec); trace_softirq_entry(h, softirq_vec);
h->action(h); //运行软中断处理函数
trace_softirq_exit(h, softirq_vec);
if (unlikely(prev_count != preempt_count())) {
printk(KERN_ERR "huh, entered softirq %td %s %p"
"with preempt_count %08x,"
" exited with %08x?\n", h - softirq_vec,
softirq_to_name[h - softirq_vec],
h->action, prev_count, preempt_count());
preempt_count() = prev_count;
} rcu_bh_qs(cpu);
}
h++;
pending >>= 1; //pending右移一位,循环检查其每一位
} while (pending); //直到pending变为0,pending最多32位,所以循环最多运行32次。 local_irq_disable(); pending = local_softirq_pending();
if (pending && --max_restart)
goto restart; if (pending)
wakeup_softirqd(); lockdep_softirq_exit(); account_system_vtime(current);
_local_bh_enable();
}
把握linux内核设计思想(三):下半部机制之软中断的更多相关文章
- 把握linux内核设计思想系列【转】
转自:http://blog.csdn.net/shallnet/article/details/47734053 版权声明:本文为博主原创文章,未经博主允许不得转载.如果您觉得文章对您有用,请点击文 ...
- 把握linux内核设计思想系列
[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 本专栏分析linux内核的设计实现,包含系统调用.中断.下半部机制.时间管理. ...
- 把握linux内核设计思想(五):下半部机制之工作队列及几种机制的选择
[版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 工作队列是下半部的第二种将工作推后运行形式.和软中断.task ...
- 把握linux内核设计思想(七):内核定时器和定时运行
[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 前面章节说到了把工作推后到除如今以外的时间运行的机制是下半部机 ...
- 把握linux内核设计思想(十三):内存管理之进程地址空间
[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet.文章仅供学习交流,请勿用于商业用途] 进程地址空间由进程可寻址的虚拟内存组成,Linux 的虚拟地址空间为0~4G字 ...
- 把握linux内核设计思想(二):硬中断及中断处理
[版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 操作系统负责管理硬件设备.为了使系统和硬件设备的协同工作不减少机器性能.系统和 ...
- 把握linux内核设计思想(十二):内存管理之slab分配器
[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流.请勿用于商业用途] 上一节最后说到对于小内存区的请求,假设採用伙伴系统来进行分配,则会在页内产生非 ...
- Linux内核设计第三周——构造一个简单的Linux系统
Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...
- Linux内核设计第三周学习总结 跟踪分析Linux内核的启动过程
陈巧然 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验步骤 登陆实验楼虚 ...
随机推荐
- iF.svnadmin 安装遇到的坑
iF.svnadmin 官网:http://svnadmin.insanefactory.com/ 安装配置iF.svnadmin : http://blog.linhere.com/archives ...
- 中国象棋程序的设计与实现(五)--回答CSDN读者的一些问题
最近写了很多文章,同时,也上传了很多免积分的FansUnion原创的优质资源,有兴趣的同学可以看来我的CSDN博客瞧瞧 http://blog.csdn.net/FansUnion. 近期,收到了不少 ...
- 2015 Multi-University Training Contest 1 y sequence
Y sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- arcmap 设置线段的不同颜色(及其它转化)
一: shp 转化为 mxd或导出地图 当时做的第一个shp文件,应该是研一的第二个学期了,都不记得是怎么操作的了. 通过file另存为mxd就可以生成各个shp的arcmap能够直接打开的mxd文 ...
- CSDN博客2014年4月24日清理缓存
亲爱的CSDN博主们.我们将于今天(2014年4月24日)对CSDN博客频道缓存进行清理,假设您登录后发现自己的文章总数.积分.评论数.訪问数出现异常,请不要慌张.您的数据并没有丢失.将会在缓存清理完 ...
- hdu_2795,线段树,单点更新
#include<iostream> #include<cstdio> #include<cstring> #define lson l,m,rt<<1 ...
- TortoiseGit配合msysGit在Git@OSC代码托管的傻瓜教程
命令行太麻烦,肿么破?便便利用睡觉的时间解决了一点效率问题,tortoiseGit处理GitHub,一样可以处理 Git @osc ,虽然说可以用gitk来调出图形界面,but,我就是不想看见黑黑的命 ...
- kali 2.0 linux中的Nmap的操作系统扫描功能
不多说,直接上干货! 可以使用-O选项,让Nmap对目标的操作系统进行识别. msf > nmap -O 202.193.58.13 [*] exec: nmap -O 202.193.58.1 ...
- FragmentPagerAdapter和FragmentStatePagerAdapter的区别
FragmentPagerAdapter 1:简单的介绍: 该类内的每一个生成的 Fragment 都将保存在内存之中,因此适用于那些相对静态的页,数量也比较少的那种:如果需要处理有很多页,并且数据动 ...
- PL/SQL Developer 关闭Sql窗口快捷键
preferences->keyconfigration->file/close然后设置你喜欢的按键就行了.(ps:这个close是关闭当前活动的那一个页面)