51nod-1363: 最小公倍数之和
【传送门:51nod-1363】
简要题意:
给出一个数n,求出1到n的数与n的最小公倍数的和
多组数据
题解:
理所当然推柿子
原题相当于求$\sum_{i=1}^{n}\frac{i*n}{gcd(i,n)}$
先枚举d=gcd(i,n),然后化简得到$$n*\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}i[gcd(i,\frac{n}{d})==1]$$
相当于求1到n-1中,与n互质的数和,设y<x,如果gcd(y,x)==1,那么gcd(x-y,x)==1,两式的贡献就是x了
所以1到n-1中,与n互质的数和为$\frac{\phi(n)*n}{2}$,特殊的,如果n=1,则数和为1
那么原式就等于$$n*\sum_{d|n且d不为n}\frac{\frac{n}{d}*\phi(\frac{n}{d})}{2}+1$$
再化简得到$$n+\frac{n}{2}\sum_{d|n且d>1}d*phi(d)$$
这样,这个式子就变成$O(\sqrt{n})$,但是多组数据仍会超时
实际上我们将n质因数分解得到$n=\prod_{i=1}^{x}p[i]^a[i]$
因为p[i]两两互质,所以可以转化为$$n+\prod_{i=1}^{x}\sum_{j=0}^{a[i]}\phi(p[i]^j)*p[i]^j$$
根据欧拉函数的性质可以得到$$n+\prod_{i=1}^{x}1+\sum_{j=1}^{a[i]}(p[i]-1)*p[i]^{2j-1}$$
再根据等比数列求和公式得到$$n+\prod_{i=1}^{x}1+(p[i]-1)*\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]^2-1}$$
$$n+\prod_{i=1}^{x}1+\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]+1}$$
然后线筛素数加速质因数分解就可以过了,记得最后处理1的情况
参考代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
LL Mod=1e9+;
int prime[],m,v[];
void pre(int n)
{
m=;
for(int i=;i<=n;i++)
{
if(v[i]==)
{
v[i]=i;
prime[++m]=i;
}
for(int j=;j<=m;j++)
{
if(prime[j]>n/i||prime[j]>v[i]) break;
v[i*prime[j]]=prime[j];
}
}
}
LL p_mod(LL a,LL b)
{
LL ans=;
while(b!=)
{
if(b%==) ans=ans*a%Mod;
a=a*a%Mod;b/=;
}
return ans;
}
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
pre();
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
LL ans=,d=n;
for(int i=;i<=m&&prime[i]<=n/prime[i];i++)
{
LL p=prime[i];
if(n%p==)
{
LL s=;
while(n%p==) s++,n/=p;
ans=ans*(+p*((p_mod(p,2LL*s)-+Mod)%Mod)%Mod*p_mod(p+,Mod-)%Mod)%Mod;
}
}
ans=ans*(+(LL)(n-)*n%Mod)%Mod;
ans=(ans-+Mod)%Mod;
printf("%lld\n",(ans*d%Mod*p_mod(2LL,Mod-)%Mod+d)%Mod);
}
return ;
}
51nod-1363: 最小公倍数之和的更多相关文章
- 51nod 1363 最小公倍数之和 ——欧拉函数
给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...
- 51nod - 1363 - 最小公倍数之和 - 数论
https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举
1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1190 最小公倍数之和 V2
给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51nod 1190 最小公倍数之和 V2【莫比乌斯反演】
参考:http://blog.csdn.net/u014610830/article/details/49493279 这道题做起来感觉非常奇怪啊--头一次见把mu推出来再推没了的-- \[ \sum ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
- 【学术篇】51nod 1238 最小公倍数之和
这是一道杜教筛的入(du)门(liu)题目... 题目大意 求 \[ \sum_{i=1}^n\sum_{j=1}^nlcm(i,j) \] 一看就是辣鸡反演一类的题目, 那就化式子呗.. \[ \s ...
随机推荐
- My first blog for java
我的第一个java程序: package com.hellojava; /** * @author 沽-名-钓-誉 */ public class HelloJava{ /** * @param 输出 ...
- 第九课: - 导出到CSV / EXCEL / TXT
第 9 课 将数据从microdost sql数据库导出到cvs,excel和txt文件. In [1]: # Import libraries import pandas as pd import ...
- [C]关于交换
交换(c,c++): 1)temp交换(也适用于非数型) 定义一个新的变量,借助它完成交换. int a,b; a=10; b=15; int t; t=a; a=b; b=t; 2)位运算 位运算不 ...
- 二.Windows I/O模型之异步选择(WSAAsyncSelect)模型
1.基于windows消息为基础的网络事件io模型.因此我们必须要在窗口程序中使用该模型.该模型中的核心是调用WSAAsyncSelect函数实现异步I/O. 2.WSAAsyncSelect函数:注 ...
- CSS 弹性盒
图片新窗口打开浏览
- 把pcl的VTK显示融合到MFC(代码找原作者)
转自PCL中国,原文链接:http://www.pclcn.org/bbs/forum.php?mod=viewthread&tid=223&extra=page%3D1 本人做了少量 ...
- jquery插件生成简单二维码
除了利用第三方网站生成二维码外,这是一个比较简单的办法吧. <script src="/Scripts/jquery.qrcode.min.js" type="te ...
- PHP 数组 & 字符串处理
1:数组分割为字符串 implode 2:字符串分割为数组 explode() 3:替换字符串 eg: $a = "Hello world" str_replace(“H”,“ ...
- Java Mybatis 缓存介绍
0 引言 本文主要介绍有关MyBatis的缓存. 正如大多数持久层框架一样,MyBatis 同样提供了一级缓存和二级缓存的支持 1. 一级缓存: 基于PerpetualCache 的 HashMap本 ...
- 沃通SSL证书、代码签名证书应用于机器人安全防护
近两年,扫地机器人.智能音箱等消费级机器人产品逐渐走入大众生活的中.随着人工智能技术的迅猛发展,预计2023年全球消费级机器人市场规模将达到150亿美元.然而,产业的迅猛发展却伴随着安全防护的缺失,安 ...