题意 求母串中子串出现的次数(长度不超过1后面100个0  显然要用大数了)

令a为子串 b为母串 d[i][j]表示子串前i个字母在母串前j个字母中出现的次数   当a[i]==b[j]&&d[i-1][j-1]!=0时 d[i][j]=d[i-1][j-1]+d[i][j-1]

(a[i]==b[j]时 子串前i个字母在母串前j个字母中出现的次数 等于 子串前i-1个字母在母串前j-1个字母中出现的次数 加上 子串前i个字母在母串前j-1个字母中出现的次数

 a[i]!=b[j]时 子串前i个字母在母串前j个字母中出现的次数 等于 子串前i个字母在母串前j-1个字母中出现的次数)

懒得写大数模版就用java交的  ;

import java.util.*;
import java.math.*; public class Main {
public static void main(String args[]) {
BigInteger d[][] = new BigInteger[105][10005];
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while ((t--) != 0) {
String b = in.next();
String a = in.next();
int la = a.length();
int lb = b.length(); for (int i = 0; i < la; ++i)
for (int j = 0; j < lb; ++j)
d[i][j] = BigInteger.ZERO; if (a.charAt(0) == b.charAt(0))
d[0][0] = BigInteger.ONE;
for (int j = 1; j < lb; ++j) {
if (a.charAt(0) == b.charAt(j))
d[0][j] = d[0][j - 1].add(BigInteger.ONE);
else
d[0][j] = d[0][j - 1];
} for (int i = 1; i < la; ++i)
for (int j = 1; j < lb; ++j) {
if (a.charAt(i) == b.charAt(j)
&& d[i - 1][j - 1] != BigInteger.ZERO) {
d[i][j] = d[i][j - 1].add(d[i - 1][j - 1]);
} else
d[i][j] = d[i][j - 1];
} System.out.println(d[la - 1][lb - 1]); }
in.close();
}
}

还有没加大数模版的C++代码

#include<cstdio>
#include<cstring>
using namespace std;
char b[10005], a[105];
int d[105][10005], la, lb, t;
void dp()
{
memset(d, 0, sizeof(d));
for(int j = 1; j <= lb; ++j)
{
if(a[1] == b[j]) d[1][j] = d[1][j - 1] + 1;
else d[1][j] = d[1][j - 1];
}
for(int i = 2; i <= la; ++i)
for(int j = 1; j <= lb; ++j)
{
if(a[i] == b[j] && d[i - 1][j - 1])
{
d[i][j] = d[i][j - 1] + d[i - 1][j - 1];
}
else d[i][j] = d[i][j - 1];
}
}
int main()
{
scanf("%s", &t);
while(t--)
{
scanf("%s%s", b + 1, a + 1);
la = strlen(a + 1);
lb = strlen(b + 1);
dp();
printf("%d\n", d[la][lb]); }
return 0;
}

Distinct Subsequences

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Formally, given a sequence X = x1x2xm,
another sequence Z = z1z2zk is a subsequence of X if there exists a strictly increasing sequence <i1,i2,
…, ik>
 of indices of X such that for all j = 1, 2, …, k, we have xij = zj. For example, Z = bcdb is
a subsequence of X =abcbdab with corresponding index sequence < 2, 3, 5, 7 >.

In this problem your job is to write a program that counts the number of occurrences of Z in X as a subsequence such that
each has a distinct index sequence.

 

Input

The first line of the input contains an integer N indicating the number of test cases to follow.

The first line of each test case contains a string X, composed entirely of lowercase alphabetic characters and having length no greater than 10,000.
The second line contains another string Z having length no greater than 100 and also composed of only lowercase alphabetic characters. Be assured that neither Z nor any prefix or suffix of Z will
have more than 10100 distinct occurrences in X as a subsequence.

 

Output

For each test case in the input output the number of distinct occurrences of Z in X as a subsequence. Output
for each input set must be on a separate line.

 

Sample Input

2

babgbag

bag

rabbbit

rabbit

 

Sample Output

5

3

UVa 10069 Distinct Subsequences(大数 DP)的更多相关文章

  1. uva 10069 Distinct Subsequences 【dp+大数】

    题目:uva 10069 Distinct Subsequences 题意:给出一个子串 x 和母串 s .求子串在母串中的不同序列的个数? 分析:定义dp[i][j]:x 的前 i 个字母在 s 的 ...

  2. uva 10069 Distinct Subsequences(高精度 + DP求解子串个数)

    题目连接:10069 - Distinct Subsequences 题目大意:给出两个字符串x (lenth < 10000), z (lenth < 100), 求在x中有多少个z. ...

  3. UVA 10069 Distinct Subsequences(DP)

    考虑两个字符串,我们用dp[i][j]表示字串第到i个和字符串到第j个的总数,由于字串必须连续 因此dp[i][j]能够有dp[i][j-1]和dp[i-1][j-1]递推而来,而不能由dp[i-1] ...

  4. 115. Distinct Subsequences (String; DP)

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  5. Distinct Subsequences (dp)

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  6. [LeetCode] Distinct Subsequences 不同的子序列

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  7. LeetCode(115) Distinct Subsequences

    题目 Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequen ...

  8. [Leetcode][JAVA] Distinct Subsequences

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

  9. Distinct Subsequences Leetcode

    Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...

随机推荐

  1. 【codeforces 799D】Field expansion

    [题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...

  2. MyBatis学习总结(7)——Mybatis缓存

    一.MyBatis缓存介绍 正如大多数持久层框架一样,MyBatis 同样提供了一级缓存和二级缓存的支持 一级缓存: 基于PerpetualCache 的 HashMap本地缓存,其存储作用域为 Se ...

  3. TCP的可靠传输(依赖流量控制、拥塞控制、连续ARQ)

    TCP可靠性表现在它向应用层提供的数据是无差错,有序,无丢失,即递交的和发送的数据是一样的. 可靠性依赖于流量控制.拥塞控制.连续ARQ等技术 <TCP/IP详解>中的“分组”是不是就是报 ...

  4. GNU Linux中的SO_RCVLOWAT和SO_SNDLOWAT说明

    /*********************************************************************  * Author  : Samson  * Date   ...

  5. node,koa 图片批量添加水印,可手动配置水印位置

    公司设计在处理京东上架商品图片的时候,需要给设计好的图片添加京东的“logo”,并且logo位置得根据图片来摆放,需要通过计算得出logo位置.那样太麻烦了,于是就用node,koa写了批量给图片添加 ...

  6. sas与mysql连接方法

    2012年8月11日 sas 9.1.3 版本 与mysql 连接 测试,可以与数据库连接1  通过odbc 直接连通 pass through connect to odbc create tabl ...

  7. vim编辑器常用语法

    1)yy (功能描述:复制光标当前一行) y数字y (功能描述:复制一段(从第几行到第几行))2)p (功能描述:箭头移动到目的行粘贴)3)u (功能描述:撤销上一步)4)dd (功能描述:删除光标当 ...

  8. Win10运行在哪里,Win10的运行怎么打开

    方法/步骤 1 唯一的方法是同时按下WIN+X键组合,如下图所示 步骤阅读 2 在弹出菜单可以看到运行了!如下图所示 步骤阅读 3 运行对话框出来了,如下图所示 步骤阅读 4 还有一个方法,点击桌面左 ...

  9. STM8S103之独立看门狗和窗口看门狗

    独立看门狗时钟来源为LSI:窗口看门狗时钟来源为CPU: 窗口看门狗窗口的含义是:喂狗必须在一定的窗口期内完成,不能过早也不能过晚. 总结:防止程序复位,用独立看门狗. 独立看门狗使用的流程:参见库函 ...

  10. passwd文件

    1.查看/etc/passwd [admin@localhost /]$ cat -n /etc/passwd 1 root:x:0:0:root:/root:/bin/bash 2 bin:x:1: ...