CF1019C Sergey's problem (图上构造)
题目大意:给你一个有向连通图,让你找出一个点集,保证点集内的点之间没有直接连边,且集合中存在一点,到一个 非点集中的点的距离小于等于2
思路很清奇
首先编号从小到大遍历每个点,如果这个点没有被访问过,把它加入集合中,再把和它的出边连接的点都标记为访问过,
如此做,会发现集合内的点到集合外的点距离最大是1
但这样做就会不满足条件1,因为是有向图,已经在集合内的点中,编号大的点可能会指向编号小的点
再按编号倒序遍历集合中的点,如果它指向了一个编号较小的,且在集合中的点,那么把那个点从集合中删除
这样做,会发现集合内的点到集合外的点距离最大是2,且集合内的点没有直接连边,答案合法
#include <set>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1000100
#define ll long long
using namespace std;
//re
int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,m,K,ma,cte,num;
int head[N],vis[N],use[N];
struct Edge{int to,nxt,val;}edge[N*];
void ae(int u,int v){
cte++;edge[cte].to=v;
edge[cte].nxt=head[u],head[u]=cte;} int main()
{
freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
int x,y,z,fx;
for(int i=;i<=m;i++)
x=gint(),y=gint(),ae(x,y);
for(int i=;i<=n;i++)
if(!vis[i])
{
vis[i]=use[i]=;
for(int j=head[i];j;j=edge[j].nxt){
int v=edge[j].to;
vis[v]=;
}
}
int ans=;
for(int i=n;i>=;i--)
if(use[i])
{
for(int j=head[i];j;j=edge[j].nxt){
int v=edge[j].to;
use[v]=;
}ans++;
}
printf("%d\n",ans);
for(int i=;i<=n;i++)
if(use[i]) printf("%d ",i);
puts("");
return ;
}
CF1019C Sergey's problem (图上构造)的更多相关文章
- 2021.11.14 CF1583E Moment of Bloom(LCA+图上构造)
2021.11.14 CF1583E Moment of Bloom(LCA+图上构造) https://www.luogu.com.cn/problem/CF1583E 题意: She does h ...
- [CF1019C]Sergey's problem[构造]
题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...
- CF1037E Trips (离线+图上构造)
题目大意:一共有n个人,每天早上会有两个人成为朋友,朋友关系不具有传递性,晚上,它们会组织旅游,如果一个人去旅游,那么他不少于$k$个朋友也要和他去旅游,求每天的最大旅游人数 一开始并没有想到反向建图 ...
- Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem
E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...
- matlab中,在灰度解剖图上叠加阈值图,by by DR. Rajeev Raizada
1.参考 reference 1. tutorial主页:http://www.bcs.rochester.edu/people/raizada/fmri-matlab.htm. 2.speech_b ...
- zoj1232Adventure of Super Mario(图上dp)
题目连接: 啊哈哈.点我点我 思路: 这个题目是一个图上dp问题.先floyd预处理出图上全部点的最短路,可是在floyd的时候,把可以用神器的地方预处理出来,也就是转折点地方不能为城堡..预处理完成 ...
- 【学习笔记】有向无环图上的DP
手动博客搬家: 本文发表于20180716 10:49:04, 原地址https://blog.csdn.net/suncongbo/article/details/81061378 首先,感谢以下几 ...
- 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划
2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...
- yii2组件之多图上传插件FileInput的详细使用
作者:白狼 出处:http://www.manks.top/yii2_multiply_images.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...
随机推荐
- Unity 组件的增、查、禁、删 代码书写
using UnityEngine; public class NewBehaviourScript : MonoBehaviour { // Use this for initialization ...
- ZBrush 4R7中自定义笔刷
为了便于雕刻,ZBrush®很人性化地设计了自定义笔刷.随着ZBrush软件版本不断更新,功能也在不断完善.只是在笔刷面板ZBrush软件就为用户提供了上百种之多,如果我们想要用某种笔刷,一个个找起来 ...
- 转载:常用 Git 命令清单
转载:常用 Git 命令清单 原文地址:http://www.ruanyifeng.com/blog/2015/12/git-cheat-sheet.html 作者: 阮一峰 我每天使用 Git , ...
- [AtCoder Regular Contest 083] Bichrome Tree
树形DP. 每个点有两个属性:黑色点的权值和,白色点权值和,一个知道另一个也一定知道. 因为只要子树的和它相等的点得权值和不超过x[u],u点的权值总能将其补齐. 设计状态f[u]表示以u为根的子树, ...
- done
- tp框架 JS里面获取session
var var_name="{:session('xxxxx')}"; 用大括号 这个方法可以获取session
- SQL SERVER-主键的建立和删除
PRIMARY KEY 约束唯一标识数据库表中的每条记录.主键必须包含唯一的值.主键列不能包含 NULL 值.每个表都应该有一个主键,并且每个表只能有一个主键.主键约束操作包含了添加约束和删除约束,修 ...
- POJ 2480
可以容易得知,F=sum(p*phi(n/p)).思路就断在这里了... 看过别人的,才知道如下: 由于gcd(i,n*m)=gcd(i,m)*gcd(i,n),所以gcd为积性函数.而积性函数之和为 ...
- 关于Thread的那些事
关于Thread的那些事 1 : 你能够调用线程的实例方法Join来等待一个线程的结束.比如: public static void MainThread() { Thread t = new Thr ...
- 好莱坞原则—Spring的IOC容器
IOC容器的概念,之前在学习SSH的时候,就有接触过.但那时候也仅仅是知道这么个概念,认为它非常难理解.事实上并非它难理解,而是我并没有停下来好好对它总结梳理过. IOC(Inversion of C ...