time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

After the piece of a devilish mirror hit the Kay’s eye, he is no longer interested in the beauty of the roses. Now he likes to watch snowflakes.

Once upon a time, he found a huge snowflake that has a form of the tree (connected acyclic graph) consisting of n nodes. The root of tree has index 1. Kay is very interested in the structure of this tree.

After doing some research he formed q queries he is interested in. The i-th query asks to find a centroid of the subtree of the node vi. Your goal is to answer all queries.

Subtree of a node is a part of tree consisting of this node and all it’s descendants (direct or not). In other words, subtree of node v is formed by nodes u, such that node v is present on the path from u to root.

Centroid of a tree (or a subtree) is a node, such that if we erase it from the tree, the maximum size of the connected component will be at least two times smaller than the size of the initial tree (or a subtree).

Input

The first line of the input contains two integers n and q (2 ≤ n ≤ 300 000, 1 ≤ q ≤ 300 000) — the size of the initial tree and the number of queries respectively.

The second line contains n - 1 integer p2, p3, …, pn (1 ≤ pi ≤ n) — the indices of the parents of the nodes from 2 to n. Node 1 is a root of the tree. It’s guaranteed that pi define a correct tree.

Each of the following q lines contain a single integer vi (1 ≤ vi ≤ n) — the index of the node, that define the subtree, for which we want to find a centroid.

Output

For each query print the index of a centroid of the corresponding subtree. If there are many suitable nodes, print any of them. It’s guaranteed, that each subtree has at least one centroid.

Example

Input

7 4

1 1 3 3 5 3

1

2

3

5

Output

3

2

3

6

Note



The first query asks for a centroid of the whole tree — this is node 3. If we delete node 3 the tree will split in four components, two of size 1 and two of size 2.

The subtree of the second node consists of this node only, so the answer is 2.

Node 3 is centroid of its own subtree.

The centroids of the subtree of the node 5 are nodes 5 and 6 — both answers are considered correct.

【题解】



这个点就是一棵树的“重心”;

考虑每个节点x。找到它的儿子节点里面以该儿子节点为根的子树的大小最大的点记big;

如果size[big]>(size[x]/2);

则这个子树的重心在big节点下面。

否则这个子树的重心就为x;

->有个性质;

两棵树;

如果通过一条边连成了一棵树;那么新的树的重心一定在原来的两棵树的重心的在新的树的路径上。

则我们找到以big为根的节点的子树的重心,然后不断往上走。找到以x为根节点的树的新的重心。(判断依据看代码);

#include <cstdio>
#include <vector> using namespace std; const int MAXN = 4e5; int cnt[MAXN], ans[MAXN],fa[MAXN];
int n, q;
vector <int> a[MAXN]; void dfs(int x)
{
cnt[x] = 1;
ans[x] = x;
int len = a[x].size();
int big = 0;
for (int i = 0; i <= len - 1; i++)
{
int y = a[x][i];
dfs(y);
cnt[x] += cnt[y];
if (cnt[y] > cnt[big])
big = y;
}
if (cnt[big] > cnt[x] / 2)
{
int now = ans[big];
int temp = cnt[x] - cnt[now];
while (temp > (cnt[x] / 2))
{
now = fa[now];
temp = cnt[x] - cnt[now];
}
ans[x] = now;
}
} int main()
{
//freopen("D:\\rush.txt", "r", stdin);
scanf("%d%d", &n, &q);
for (int i = 2; i <= n; i++)
{
int pa;
scanf("%d", &pa);
fa[i] = pa;
a[pa].push_back(i);
}
dfs(1);
for (int i = 1; i <= q; i++)
{
int x;
scanf("%d", &x);
printf("%d\n", ans[x]);
}
return 0;
}

【24.63%】【codefroces 686D】Kay and Snowflake的更多相关文章

  1. codeforces 686D D. Kay and Snowflake(dfs)

    题目链接: D. Kay and Snowflake time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  2. 【题解】【网络流24题】航空路线问题 [P2770] [Loj6122]

    [题解][网络流24题]航空路线问题 [P2770] [Loj6122] 传送门:航空路线问题 \([P2770]\) \([Loj6122]\) [题目描述] 给出一张有向图,每个点(除了起点 \( ...

  3. 【题解】【网络流24题】汽车加油行驶问题 [P4009] [Loj6223]

    [题解][网络流24题]汽车加油行驶问题 [P4009] [Loj6223] 传送门:汽车加油行驶问题 \([P4009]\) \([Loj6223]\) [题目描述] 给出一个 \(N \times ...

  4. 【资料下载区】【iCore4相关代码、资料下载地址】更新日期2018/02/24

    [iCore4相关文档][更新中...] iCore4原理图(PDF)下载iCore4引脚注释(PDF)下载iCore4机械尺寸(PDF)下载 [iCore4相关例程代码][ARM] DEMO测试程序 ...

  5. 【Android】【录音】Android录音--AudioRecord、MediaRecorder

    [Android][录音]Android录音--AudioRecord.MediaRecorder Android提供了两个API用于实现录音功能:android.media.AudioRecord. ...

  6. 【剑指Offer学习】【全部面试题汇总】

    剑指Offer学习 剑指Offer这本书已经学习完了.从中也学习到了不少的东西,如今做一个总的文件夹.供自已和大家一起參考.学如逆水行舟.不进则退.仅仅有不断地学习才干跟上时候.跟得上技术的潮流! 全 ...

  7. 【CODECHEF】【phollard rho + miller_rabin】The First Cube

    All submissions for this problem are available. Read problems statements in Mandarin Chinese and Rus ...

  8. 【剑指Offer学习】【所有面试题汇总】

    剑指Offer学习 剑指Offer这本书已经学习完了,从中也学习到了不少的东西,现在做一个总的目录,供自已和大家一起参考,学如逆水行舟,不进则退.只有不断地学习才能跟上时候,跟得上技术的潮流! 所有代 ...

  9. 【微信小程序项目实践总结】30分钟从陌生到熟悉 web app 、native app、hybrid app比较 30分钟ES6从陌生到熟悉 【原创】浅谈内存泄露 HTML5 五子棋 - JS/Canvas 游戏 meta 详解,html5 meta 标签日常设置 C#中回滚TransactionScope的使用方法和原理

    [微信小程序项目实践总结]30分钟从陌生到熟悉 前言 我们之前对小程序做了基本学习: 1. 微信小程序开发07-列表页面怎么做 2. 微信小程序开发06-一个业务页面的完成 3. 微信小程序开发05- ...

随机推荐

  1. 添加asp.net mvc到现有的asp.net web form 应用程序

    前言 asp.net mvc的前一版本为asp.net web Form(Asp.net mvc之前称为asp.net),其第一个版本与2002年年初发布.asp.net web form 属于.ne ...

  2. 11.4 Android显示系统框架_APP与SurfaceFlinger内部机制分析

    4.1 APP跟SurfaceFlinger之间的重要数据结构 一个应用程序有一个或者多个surface(一般只有一个),一个surface有一个或者多个buffer,这些buffer需要应用向sur ...

  3. 1、移动端 2、后台 3、 移动端,Web 端 4、 PC端

    移动端: 1.公众号:停开心 住总物业 2.app:  iso Android 停开心,住总停开心 后台:停开心智慧停车管理平台(所有的停车场) 移动端,Web端: 海投OA,公司OA PC端:收费软 ...

  4. 【】maze

    [链接]点击打开链接 [题意] 小 T 被放到了一个迷宫之中,这个迷宫由 n 个节点构成,两个节点之间可能存在多条无 向边,小 T 的起点为 1 号节点,终点为 n 号节点.有 m 条无向边,对于每一 ...

  5. 【z04】计算系数

    [题目链接]:http://noi.qz5z.com/viewtask.asp?id=z04 [题解] 用二项式定理可以写出下列通式 组合数可以用杨辉三角搞出来; a的x次方直接乘就好了;指数也不大. ...

  6. [WASM] Call a JavaScript Function from WebAssembly

    Using WASM Fiddle, we show how to write a simple number logger function that calls a consoleLog func ...

  7. 编程算法 - 远征队(expedition) 代码(C)

    远征队(expedition) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 远征队有一辆卡车须要行驶L单位的距离, 開始时, 车上有P单位的 ...

  8. 计算git树上随意两点的近期切割点。

    1.git是一种分布式代码管理工具,git通过树的形式记录文件的更改历史,比方: base'<--base<--A<--A' ^ | --- B<--B' 小米project师 ...

  9. js中单引号和双引号的区别(html中属性规范是用双引号,js中字符串规定是用单引号)(js中单引号区别和php很像:单引号快,双引号可转义字符,双引号可解析变量)

    js中单引号和双引号的区别(html中属性规范是用双引号,js中字符串规定是用单引号)(js中单引号区别和php很像:单引号快,双引号可转义字符,双引号可解析变量) 一.总结 1.html中属性规范是 ...

  10. Android 升级到android studio 2.2项目死活run不起来

    背景:升级到Android studio 2.2项目死活运行不起来 现象如下: run with --stacktrace --debug等等抛出的bug简直无法忍视 解决办法:把compileSdk ...