What is the class of this image ?

主要是以下常见的数据集,用以衡量算法的分类准确率:

  • mnist、cifar-10、cifar-100stl-10
  • svhn、ILSVRC2012 task 1

1. cifar-10

CIFAR-10 and CIFAR-100 datasets

  • cifar-10-batches-py(Python 接口)

    import os
    import pickle
    import numpy as np def load_CIFAR10_batch(filename):
    with open(filename, 'rb') as f:
    data = pickle.load(f, encoding='latin1')
    X = data['data']
    y = data['labels']
    X = X.reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1).astype(np.float32)
    y = np.array(y)
    return X, y def load_CIFAR10(root):
    xs, ys = [], []
    for n in range(1, 6):
    filename = os.path.join(root, 'data_batch_{}'.format(n))
    X, y = load_CIFAR10_batch(filename)
    xs.append(X)
    ys.append(y)
    Xtr = np.concatenate(xs)
    Ytr = np.concatenate(ys)
    Xte, Yte = load_CIFAR10_batch(os.path.join(root, 'test_batch'))
    return Xtr, Ytr, Xte, Yte

    对于描述数据信息的信息(batches.meta),仍然可以使用 pickle.load 的形式加载,加载的结果仍然是一个字典类型:

    with open('batches.meta', 'rb') as f:
    data = pickle.load(f, encoding='latin1')
    print(data) {'label_names': ['airplane',
    'automobile',
    'bird',
    'cat',
    'deer',
    'dog',
    'frog',
    'horse',
    'ship',
    'truck'],
    'num_cases_per_batch': 10000,
    'num_vis': 3072}
  • cifar-10-batches-mat(matlab 接口)

    最方便的方式是调用 matlab 内置已封装好的 api,helperCIFAR10Data.download/load,或者使用 edit helperCIFAR10Data查看其实现;

    function [train_x, train_y, test_x, test_y] = load_cifar(filepath)
    
        train_x = []; train_y = [];
    for i = 1:5
    filename = fullfile(filepath, sprintf('data_batch_%d.mat', i));
    [batch_train, batch_labels] = load_batch_as_4d_tensor(filename, true);
    train_x = cat(4, train_x, batch_train);
    train_y = [train_y; batch_labels];
    end
    filename = fullfile(filepath, 'test_batch.mat');
    [test_x, test_y] = load_batch_as_4d_tensor(filename, true);
    end function [train_x, train_y] = load_batch_as_4d_tensor(filename, to_categorical)
    % 这里的 x_train 是 4 维的 tensor, 32*32*3*num
    if ~exist('to_categorical', 'var') || isempty(to_categorical)
    to_categorical = false;
    end
    load(filename);
    train_x = reshape(data', 32, 32, 3, []);
    train_x = permute(train_x, [2, 1, 3, 4]); % 互换第一维和第二维
    train_y = labels;
    if to_categorical
    metafile = fullfile(fileparts(filename), 'batches.meta.mat');
    load(metafile);
    train_y = categorical(train_y, 0:9, label_names);
    end end

数据集(benchmark)、常用数据集的解析(cifar-10、)的更多相关文章

  1. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

  2. RDD(弹性分布式数据集)及常用算子

    RDD(弹性分布式数据集)及常用算子 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据 处理模型.代码中是一个抽象类,它代表一个 ...

  3. 【AO笔记】有关TIN数据集的常用介绍

    写论文查了很多TIN的接口和属性,特此来记录一下. 转载请注明出处:博客园@秋意正寒,B站同名. 未完待续 1. Tin数据集在ArcGIS中的描述 Tin数据集在磁盘中,被ArcGIS以文件夹形式管 ...

  4. 【转帖】Linux上,最常用的一批命令解析(10年精选)

    Linux上,最常用的一批命令解析(10年精选) https://juejin.im/post/5d134fbfe51d4510727c80d1 写的挺好呢 Linux这么多命令,通常会让初学者望而生 ...

  5. torchvision的理解和学习 加载常用数据集,对主流模型的调用.md

    torchvision的理解和学习 加载常用数据集,对主流模型的调用 https://blog.csdn.net/tsq292978891/article/details/79403617 加载常用数 ...

  6. 【神经网络与深度学习】基于Windows+Caffe的Minst和CIFAR—10训练过程说明

    Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教 ...

  7. 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow

    原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...

  8. 人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载

    人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计 ...

  9. 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集

    机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集   选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...

  10. xml常用四种解析方式优缺点的分析×××××

    xml常用四种解析方式优缺点的分析 博客分类: xml   最近用得到xml的解析方式,于是就翻了翻自己的笔记同时从网上查找了资料,自己在前人的基础上总结了下,贴出来大家分享下. 首先介绍一下xml语 ...

随机推荐

  1. 使用Intent的Flag设置启动參数

    Intent中关于激活Activity的Flag Intent类定义了一批常量,用于配置激活Activity时的相关參数; 在Intent中设置Flag ·调用Intent的setFlags()或ad ...

  2. ES6的学习之路(基础知识总结)

    1. 变量声明 1).let 1)使用let定义的变量不会进行"变量提升" console.log(a);//Uncaught ReferenceError: a is not d ...

  3. BaaS简介

    SaaS(软件即服务:Software as a Service).IaaS(基础设施即服务:Infrastructure as a Service)和PaaS(平台即服务:Platform as a ...

  4. 对inetd、xinetd与TCP_Wrapper的基本了解

    在Linux系统中有一个特殊的守护进程inetd(InterNET services Daemon),它用于Internet标准服务,通常在系统启动时启动.通过命令行可以给出inetd的配置文件,该配 ...

  5. mysql三种带事务批量插入

    原文:mysql三种带事务批量插入 c#之mysql三种带事务批量插入 前言 对于像我这样的业务程序员开发一些表单内容是家常便饭的事情,说道表单 我们都避免不了多行内容的提交,多行内容保存,自然要用到 ...

  6. C++11实现placeholder

    文章分析怎样在C++11中实现简单的placeholder. 首先看看什么是placeholder: for_each(arr.begin(), arr.end(), cerr << _0 ...

  7. FastSocket学习笔记~RPC的思想,面向对象的灵活

    首先非常感谢这位来自新浪的老兄,它开发的这个FastSocket非常不错,先不说性能如何,单说它的使用方式和理念上就很让人赞口,从宏观上看,它更像是一种远程过程的调用RPC,即服务器公开一些命令,供客 ...

  8. 各种排序算法的分析及java实现 分类: B10_计算机基础 2015-02-03 20:09 186人阅读 评论(0) 收藏

    转载自:http://www.cnblogs.com/liuling/p/2013-7-24-01.html 另可参考:http://gengning938.blog.163.com/blog/sta ...

  9. 三大主流ETL工具选型 分类: H2_ORACLE 2013-08-23 11:17 426人阅读 评论(0) 收藏

    ETL(extract, transform and load)产品乍看起来似乎并不起眼,单就此项技术本身而言,几乎也没什么特别深奥之处,但是在实际项目中,却常常在这个环节耗费太多的人力,而在后续的维 ...

  10. Java的面向AOP编程

    一. 引言 AOP(Aspect-Oriented Programming,面向切面的编程),是一种新型的编程范式,主张关注软件流程中的一个切面,将相同功能的代码整合打包在一起,减少系统的耦合性,增强 ...