codeforces 437D The Child and Zoo
2 seconds
256 megabytes
standard input
standard output
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n.
The i-th area contains ai animals
in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo
from any other area using the roads.
Our child is very smart. Imagine the child want to go from area p to area q.
Firstly he considers all the simple routes from p to q.
For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q).
Finally, the child chooses one of the routes for which he writes down the value f(p, q).
After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p ≠ q)?
Can you answer his question?
The first line contains two integers n and m (2 ≤ n ≤ 105; 0 ≤ m ≤ 105).
The second line contains n integers: a1, a2, ..., an (0 ≤ ai ≤ 105).
Then follow m lines, each line contains two integers xi and yi (1 ≤ xi, yi ≤ n; xi ≠ yi),
denoting the road between areas xi and yi.
All roads are bidirectional, each pair of areas is connected by at most one road.
Output a real number — the value of
.
The answer will be considered correct if its relative or absolute error doesn't exceed 10 - 4.
4 3
10 20 30 40
1 3
2 3
4 3
16.666667
3 3
10 20 30
1 2
2 3
3 1
13.333333
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
18.571429
Consider the first sample. There are 12 possible situations:
- p = 1, q = 3, f(p, q) = 10.
- p = 2, q = 3, f(p, q) = 20.
- p = 4, q = 3, f(p, q) = 30.
- p = 1, q = 2, f(p, q) = 10.
- p = 2, q = 4, f(p, q) = 20.
- p = 4, q = 1, f(p, q) = 10.
Another 6 cases are symmetrical to the above. The average is
.
Consider the second sample. There are 6 possible situations:
- p = 1, q = 2, f(p, q) = 10.
- p = 2, q = 3, f(p, q) = 20.
- p = 1, q = 3, f(p, q) = 10.
Another 3 cases are symmetrical to the above. The average is
.
译文
当然了,我们的小朋友是非常喜欢在动物园游玩的。这个动物园有n个区域,编号为1至n,第i个区域有a[i]仅仅动物。动物园里还有m条路,每条路连接两个不同样的区域。动物园自然是连通的——你能够从不论什么一个区域到达随意的其它区域。
我们的小朋友非常聪明。如果他打算从区域p走到区域q。他首先会考虑全部从p走到q的简单路径,然后对于每一条路径,他都会写下路径上的区域中动物数量的最小值。
我们记这些写下的数字中最大的为f(p,q)。终于,他会选择一条值为f(p,q)的路径。
在他游玩这个公园之后。他想到了这样一个问题:全部f(p,q)(p不等于q)的平均值是多少?你能回答这个问题吗?
Input
第一行是n,m(2<=n<=10^5; 0<=m<=10^5)。第二行有a[1],a[2],...,a[n](0<=a[i]<=10^5)。接下来m行,每行有两个整数x[i]和y[i](1<=x[i],y[i]<=n; x[i]不等于y[i]),表示一条连接x[i]和y[i]的道路。
全部道路都是双向。每对区域至多由一条道路直接连接。
Output
输出一个实数——全部f(p,q)之和(p不等于q)除以n(n-1)的值。
假设你的答案与标准答案的相对误差或绝对误差不超过10^(-4),就会被觉得是正确的。
题解
带权并查集、最大生成树。
想清楚了非常easy。
首先设从x点到y点,要进过k条路:1、每条路连接的两个点中,点权值小的点对答案有贡献,我们能够把这条边的边权记为“这条路连接的两个点中点较小的权值”。2、全部k条路中,边权最大的为f(x,y)。
以上因为要找最大(贪心,且在图中),就想到了最大生成树。
接下来是计数问题。
记一下每一个集合中的元素就可以。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m,fa[100002];
ll a[100002],size[100002],ans;
struct bian {int x,y;ll v;} e[100002];
void init()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{scanf("%I64d",&a[i]);
fa[i]=i; size[i]=1;
}
for(int i=1;i<=m;i++)
{scanf("%d%d",&e[i].x,&e[i].y);
e[i].v=min(a[e[i].x],a[e[i].y]);
}
}
bool kp(const bian &u,const bian &w)
{return u.v>w.v;}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void klskl()
{
sort(e+1,e+m+1,kp);
for(int i=1;i<=m;i++)
{int r1=find(e[i].x),r2=find(e[i].y);
if(r1!=r2)
{ans+=e[i].v*size[r1]*size[r2];
size[r1]+=size[r2];
fa[r2]=r1;
}
}
ll chus=(ll)n*(n-1)/2;//注意:一定要有这句话否则会wa。
double ans2=(double)ans/chus;
printf("%.6lf",ans2);
}
int main()
{
init(); klskl(); return 0;
}
codeforces 437D The Child and Zoo的更多相关文章
- Codeforces 437D The Child and Zoo(贪心+并查集)
题目链接:Codeforces 437D The Child and Zoo 题目大意:小孩子去參观动物园,动物园分非常多个区,每一个区有若干种动物,拥有的动物种数作为该区的权值.然后有m条路,每条路 ...
- Codeforces 437D The Child and Zoo(并查集)
Codeforces 437D The Child and Zoo 题目大意: 有一张连通图,每个点有对应的值.定义从p点走向q点的其中一条路径的花费为途径点的最小值.定义f(p,q)为从点p走向点q ...
- Codeforces 437D The Child and Zoo - 树分治 - 贪心 - 并查集 - 最大生成树
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The ...
- Codeforces D - The Child and Zoo
D - The Child and Zoo 思路: 并查集+贪心 每条边的权值可以用min(a[u],a[v])来表示,然后按边的权值从大到小排序 然后用并查集从大的边开始合并,因为你要合并的这两个联 ...
- Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集
B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...
- Codeforces 437 D. The Child and Zoo 并查集
题目链接:D. The Child and Zoo 题意: 题意比较难懂,是指给出n个点并给出这些点的权值,再给出m条边.每条边的权值为该条路连接的两个区中权值较小的一个.如果两个区没有直接连接,那么 ...
- Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集
D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 437B The Child and Set
题目链接:Codeforces 437B The Child and Set 開始是想到了这样的情况,比方lowbit之后从大到小排序后有这么几个数,200.100,60.50.S = 210.那先选 ...
- cf437D The Child and Zoo
D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
随机推荐
- MySQL的DML和DQL 增删改查
DML和DQL 增删改查 SELECT * FROM grade --新增 insert -- 向年级表中新增3条数据INSERT INTO grade(gradeID,gradeName) VA ...
- 322 Coin Change 零钱兑换
给定不同面额的硬币(coins)和一个总金额(amount).写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合方式能组成总金额,返回-1.示例 1:coins = [1, ...
- C#学习-处理Excel
首先先了解下一个Excel文件的组成 1.一个Excel包含多个工作表(Sheet) 2.一个工作表(Sheet)包含多行(Row) 3.一行(Row)包含多个单元格(Cell) 如何判断一个单元 ...
- 如何扒取一个网站的HTML和CSS源码
一个好的前端开发,当看到一个很炫的页面的时候会本着学习的心态,想知道网站的源码.以下内容只是为了大家更好的学习,拒绝抄袭,支持正版. 1 首先我们要有一个chrome浏览器 2 在本地创建相关文件夹 ...
- Java——Spring配置
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- mysql之数据去重并记录总数
引用: http://blog.sina.com.cn/s/blog_6c9d65a10101bkgk.htmlhttp://www.jb51.net/article/39302.htm 1.使用di ...
- 01--TCP状态转换
参考大牛文章: http://www.cnblogs.com/qlee/archive/2011/07/12/2104089.html
- Windows 8 常见教程
http://www.codeproject.com/Articles/439874/Web-service-on-Windows-Phone http://www.c-sharpcorner.com ...
- cstring 转 string
都通过基本类型来转换即可:CString可以转换为基本类型LPCTSTR,LPCTSTR根据项目编码可以是const char*或者const wchar_t*:string可以用c_str()转换为 ...
- 【原创】使用JS封装的一个小型游戏引擎及源码分享
1 /** * @description: 引擎的设计与实现 * @user: xiugang * @time: 2018/10/01 */ /* * V1.0: 引擎实现的基本模块思路 * 1.创建 ...