Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5

1

3

1

5

2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

 
题意:给你一组序列 只能从左端点 或者 右端点 选取一个数乘上选取它的天数 得到一个最大 权值和
思路: dp[i][j] 表示第i个物品 选取j个左边的物品 的最大权值
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int dp[][];
int main(){
ios::sync_with_stdio(false);
int n;
while(cin>>n){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
cin>>a[i];
// sum[i]+=a[i];
}
dp[][]=a[n];
dp[][]=a[];
for(int i=;i<=n;i++){
for(int j=n;j>=n-i+;j--)
dp[i][]+=(a[j]*(n-j+));
for(int j=;j<=i;j++){
if(dp[i-][j-]+a[j]*i<dp[i-][j]+a[n-(i--j)]*i){
dp[i][j]=dp[i-][j]+a[n-(i--j)]*i;
}else{
dp[i][j]=dp[i-][j-]+a[j]*i;
}
}
}
int ans=-inf;
for(int i=;i<=n;i++)
ans=max(dp[n][i],ans);
cout<<ans<<endl;
}
return ;
}

poj 3186 Treats for the Cows(dp)的更多相关文章

  1. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  2. POJ 3186 Treats for the Cows (动态规划)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  3. POJ 3186 Treats for the Cows 一个简单DP

    DP[i][j]表示现在开头是i物品,结尾是j物品的最大值,最后扫一遍dp[1][1]-dp[n][n]就可得到答案了 稍微想一下,就可以, #include<iostream> #inc ...

  4. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

  5. POJ 3186 Treats for the Cows

    简单DP dp[i][j]表示的是i到j这段区间获得的a[i]*(j-i)+... ...+a[j-1]*(n-1)+a[j]*n最大值 那么[i,j]这个区间的最大值肯定是由[i+1,j]与[i,j ...

  6. POJ3186 Treats for the Cows —— DP

    题目链接:http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K To ...

  7. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  8. poj3186 Treats for the Cows

    http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  9. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

随机推荐

  1. C#设计模式之6:抽象工厂模式

    前面分析了简单工厂模式和工厂方法模式,接着来看一下抽象工厂模式,他与工厂方法模式有一些相似的地方,也有不同的地方. 先来看一个不用工厂方法模式实现的订购披萨的代码: 对象依赖的问题:当你直接实例化一个 ...

  2. Linux 文件特殊权限 SUID SGID SBIT

    文件除了常规的权限r, w, x 还有一些特殊的权限,s与t权限,具体的用处如下 1 SetUID 当s 这个标志出现在文件所有者的x权限上时, 例如/usr/bin/passwd, [root@or ...

  3. day 7-20 视图,触发器,事务

    一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  4. git遇到的问题 .Git: There is no tracking information for the current branch.

    1.Git: There is no tracking information for the current branch. 在执行git pull的时候,提示当前branch没有跟踪信息: git ...

  5. java中级——集合框架【4】-Collections

    Collections 首先我们要知道Collections是一个类,容器的工具类,就如同Arrays是数组的工具类 反转 reverse 使List中的数据发生发转 package cn.jse.c ...

  6. Linux基础学习笔记5-软件管理

    包管理器 二进制应用程序的组成部分: 二进制文件.库文件.配置文件.帮助文件 程序包管理器: debian:deb文件.dpkg包管理器 redhat:rpm文件.rpm包管理器 rpm:Redhat ...

  7. DTW的原理及matlab实现

    参考: https://www.cnblogs.com/Daringoo/p/4095508.html

  8. ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2)

    今天服务器遇到了一个很熟悉的问题, 输入 #mysql -u root -p   ERROR 2002 (HY000):Can't connect to local MySQL server     ...

  9. Redis事物

    redis事物定义: >Redis事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的命令请求所打断. >Redis事务的主要作 ...

  10. prometheus和metrucs-server (k8s监控)

    资源指标:metrucs-server 自定义指标:prometheus, k8s-prometheus-adapter(转换prometheus数据的格式) 新一代架构: 核心指标流水线:由kube ...