[转]Kaldi语音识别
转:http://ftli.farbox.com/post/kaldizhong-wen-shi-bie
Kaldi语音识别
1.声学建模单元的选择
1.1对声学建模单元加入位置信息
2.输入特征
3.区分性技术
4.多音字如何处理?
5.Noise Robust ASR
6.Deep Learning[DNN/CNN替换GMM]
7.在手机等资源受限设备
author:Feiteng
Email:lifeiteng0422@gmail.com
date:2014/08/10 Kaldi训练脚本针对不同的语料库,需要重写数据准备部分,脚本一般放在conf、local文件夹里; conf放置一些配置文件,如提取mfcc、filterbank等特征参数的配置,解码时的一些参数配置
local一般用来放置处理语料库的数据准备部分脚本 > 中文识别,应该准备:发音词典、音频文件对应的文本内容和(文件标注)一个基本可用的语言模型(解码时使用)
注:一般情况下,在模型训练阶段LM对ASR的参数训练没有影响,即不影响GMM、HMM、DNN/CNN的参数值;使用区分度模型训练会有影响[生成Lattice候选]
1.声学建模单元的选择 全音节[是否带声调]、声韵母[是否带声调]、音素?
> 带声调的声韵母作为建模单元是比较常见的中文识别选择,也有一些文章指出,使用更细化的phones 集可以有更多的性能提升:
中文连续语音识别系统音素建模单元集的构建——包叶波等
基于发音特征的汉语普通话语音声学建模——颜永红等
基于发音特征的汉语声调建模方法及其在汉语语音识别中的应用——刘文举等
1.1对声学建模单元加入位置信息 For instance, we'd have:
AA AA_B AA_E AA_I AA_S
for (B)egin, (E)nd, (I)nternal and (S)ingleton
and in the case of silence
SIL SIL SIL_B SIL_E SIL_I SIL_S
仍然要注意,中英文的差别,中文声学建模单元可能不含有全部的_B _E _I _S 2.输入特征 MFCC、fbank、PLP 使用对角协方差矩阵的GMM由于忽略了不同特征维度的相关性,MFCC更适合用来做特征
DNN/CNN可以对更好的利用这些相关性,把MFCC的DCT省略,使用fbank特征可以更多地降低WER
tips: Deep Learning更多是实验性质,解释多半是迎合实验现象 甚至直接从语音波形图上直接提取特征 IBM-Tara N. Sainath-2014-IMPROVEMENTS TO FILTERBANK AND DELTA LEARNING Tara N. Sainath发表了一系列的CNN on Speech的文章,我觉得质量是CNN on Speech的文章中最好的 中文是带声调的语言,声调不同,差别很多,因此可以在特征上加入声调信息 2014-A DNN-BASED ACOUSTIC MODELING OF TONAL LANGUAGE AND ITS APPLICATION TO MANDARIN PRONUNCIATION TRAINING 2014-AUTOMATIC PHONETIC SEGMENTATION IN MANDARIN CHINESE BOUNDARY MODELS, GLOTTAL FEATURES AND TONE Noise Robust feature? LiDeng2013-An Overview of Noise-Robust Automatic Speech Recognition 3.区分性技术 区别特征提取:LDA、MLLR、SAT、fbMMI
区分度模型训练:MMI、MPE、MCE、smbr
经验:并不是所有区分性技术都有正面效果
4.多音字如何处理? 假设我们的文本标注如下: spk001 我们 的 作品 为 第一名
发音词典如下:
的 d e0
的 d e4
的 d i2
为 w ei2
为 w ei4 的和为都是多音字,那么在模型训练阶段如何根据标注spk001联合phones的HMM模型呢?
有两种解决策略: ①唯一化处理:更改文本标注和发音词典,将多音字唯一化标注 如: 的1 d e0 的2 d e4 为1 w ei2 为2 w ei4 spk001 我们 的1 作品 为1 第一名 这样做的话,我们在解码阶段需要去除发音词典中的标识1、2,从而不会在解码结果中引入多余的1、2 ②自动处理:Kaldi可以将多种选择(多音)编入spk001的fst,在Align阶段根据音频特征选择phone的标号
这种处理可能不够精确,ML本来就不能100%准确,这点让人悲伤; 不过可能语料库的发音人并不能对所有的多音字都发正确的音, 如果使用①需要校对每一个含有多音字的音频发音,人工大大的; 英语单词也存在多音字,不过相比中文少得多,可参考:冯志伟-汉语拼音音节的歧义指数 5.Noise Robust ASR 从特征提取、模型层面把噪声考虑进去 可参考:
综述文章:LiDeng2013-An Overview of Noise-Robust Automatic Speech Recognition
6.Deep Learning[DNN/CNN替换GMM] 这一步“需要”先训练一个HMM+GMM,然后获得wav文件的alignment,即每一帧对应的phone->state
这样我们就为DNN准备好了 train.data train.label
注:我们可以使用为GMM提取的特征,也可以重新从wav提取特征,需要注意的是窗口大小、帧移要与alignment匹配;
通常提取fbank特征作为DNN的输入,而且组合当前帧左右相邻的n帧成 2n+1帧特征作为输入 Dropout、ReLU
关于Dropout我在TIMIT做了不下20组实验,才看到WER的下降,更绝大多数文章的描述并不相同;
ReLU做了几组实验,没看到更低的WER,有待继续。
CNN
根据实验CNN相比DNN会有5%-10%的WER下降,卷积层不同的实现[FFT vs 矩阵乘积]性能会有差异,这一层计算量略大
Tara N. Sainath发表了一系列的CNN on Speech的文章,我觉得质量是CNN on Speech的文章中最好的
直接HMM+DNN混合训练
参考:2014-google-GMM-FREE DNN TRAINING
其他
SVD低秩逼近W矩阵
7.在手机等资源受限设备 参考 雷欣 的两篇文章,针对数值存储、模型等做优化,在资源暂用与识别率下降方面做权衡 1.2013-Accurate and Compact Large Vocabulary Speech Recognition on Mobile Devices
2.FINE CONTEXT, LOW-RANK, SOFTPLUS DEEP NEURAL NETWORKS FOR MOBILE SPEECH RECOGNITION
[转]Kaldi语音识别的更多相关文章
- Kaldi语音识别快速入门
一.简介 Kaldi是使用C++编写的语音识别工具包,Apache License v2.0许可.主要供语音识别研究人员使用.Kaldi的目标和范围与HTK类似.目标是拥有易于修改和扩展的现代而灵活的 ...
- 103、Linux 编译 Kaldi 语音识别工具
由于这个开源的语音识别工具Kaldi只能在Linux下面成功编译, 所以这一小节来写如何成功地在Linux下面编译Kaldi工具 (1)第一步,去github 上面把 Kaldi下载下来 git cl ...
- 调用kaldi的模型进行解码
At the moment Kaldi is targeted more at people who are building ASR systems than those who just want ...
- 在ubuntu下安装kaldi基本步骤
注:最近在学习kaldi语音识别工具,在安装过程中遇到了许多问题,在此记录,以备后需. 在一开始,我看了这篇博客(http://blog.topspeedsnail.com/archives/1001 ...
- Ubuntu下kaldi安装
该文章为博主原创,如若转载请注明出处:https://www.cnblogs.com/fengleixue/p/9482202.html 因公司业务需要需使用kaldi语音识别工具,现将kaldi环境 ...
- 用于数据科学的顶级 C/C++ 机器学习库整理
用于数据科学的顶级 C/C++ 机器学习库整理 介绍和动机--为什么选择 C++ C++ 非常适合 动态负载平衡. 自适应缓存以及开发大型大数据框架 和库.Google 的MapReduce.Mong ...
- 三个小白是如何在三个月内搭一个基于kaldi的嵌入式在线语音识别系统的
前面的博客里说过最近几个月我从传统语音(语音通信)切到了智能语音(语音识别).刚开始是学语音识别领域的基础知识,学了后把自己学到的写了PPT给组内同学做了presentation(语音识别传统方法(G ...
- kaldi使用cvte模型进行语音识别
操作系统 : Unbutu18.04_x64 gcc版本 :7.4.0 该模型在thch30数据集上测试的错误率只有8.25%,效果还是不错的. 模型下载地址: http://www.kaldi-as ...
- 我们基于kaldi开发的嵌入式语音识别系统升级成深度学习啦
先前的文章<三个小白是如何在三个月内搭一个基于kaldi的嵌入式在线语音识别系统的>说我们花了不到三个月的时间搭了一个基于kaldi的嵌入式语音识别系统,不过它是基于传统的GMM-HMM的 ...
随机推荐
- docker mysql 主主同步
转发自:https://blog.csdn.net/money9sun/article/details/85099134 第一步:安装docker https://www.cnblogs.com/ ...
- 《Java从入门到精通》学习总结4
1. 程序运行期间,大部分数据都在内存中进行操作,当程序结束时,这些数据将消失. 如果需要将数据永久保存,可使用文件输入流 / 文件输出流与指定的文件建立连接,将需要的数据永久保存到文件中. File ...
- 大数据学习(一)-------- HDFS
需要精通java开发,有一定linux基础. 1.简介 大数据就是对海量数据进行数据挖掘. 已经有了很多框架方便使用,常用的有hadoop,storm,spark,flink等,辅助框架hive,ka ...
- Vue的从入门到放弃
此贴仅记录vue学习路程中遇见的大大小小,形形色色的问题 1. vue自动打开浏览器配置: 当使用vue 脚手架搭建项目后启动npm run dev,会出现 但是不会自动打开浏览器的,这时候去con ...
- Linux驱动之内核自带的S3C2440的LCD驱动分析
先来看一下应用程序是怎么操作屏幕的:Linux是工作在保护模式下,所以用户态进程是无法象DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Linux抽象出FrameBuffer这个设备来供用户 ...
- Program Hyundai i20 Smart Key with VVDI & Xtool X100 Pad2
How-to: generate and program Hyundai i20 smart key with VVDI Mini Key Tool and XTOOL X100 PAD2. Step ...
- iframe和form表单实现ajax请求上传数据
form的target属性设置为iframe的name值时,表示提交到url后返回的数据显示到iframe区域 <form action="/upload.html" met ...
- 常用jquery
水果:<input type="checkbox" name="shuiGuo" value="2">苹果<input t ...
- Android.mk学习
2019-03-31 学习变量 $(call my-dir) /usr/bin2/android-ndk-r16/build/core $(CLEAR_VARS) /usr/bin2/android- ...
- 【转】TCP/UDP简易通信框架源码,支持轻松管理多个TCP服务端(客户端)、UDP客户端
[转]TCP/UDP简易通信框架源码,支持轻松管理多个TCP服务端(客户端).UDP客户端 目录 说明 TCP/UDP通信主要结构 管理多个Socket的解决方案 框架中TCP部分的使用 框架中UDP ...