codeforces618B
Guess the Permutation
Bob has a permutation of integers from 1 to n. Denote this permutation as p. The i-th element of p will be denoted as pi. For all pairs of distinct integers i, jbetween 1 and n, he wrote the number ai, j = min(pi, pj). He writes ai, i = 0 for all integer i from 1 to n.
Bob gave you all the values of ai, j that he wrote down. Your job is to reconstruct any permutation that could have generated these values. The input will be formed so that it is guaranteed that there is at least one solution that is consistent with the information given.
Input
The first line of the input will contain a single integer n (2 ≤ n ≤ 50).
The next n lines will contain the values of ai, j. The j-th number on the i-th line will represent ai, j. The i-th number on the i-th line will be 0. It's guaranteed that ai, j = aj, i and there is at least one solution consistent with the information given.
Output
Print n space separated integers, which represents a permutation that could have generated these values. If there are multiple possible solutions, print any of them.
Examples
2
0 1
1 0
2 1
5
0 2 2 1 2
2 0 4 1 3
2 4 0 1 3
1 1 1 0 1
2 3 3 1 0
2 5 4 1 3
Note
In the first case, the answer can be {1, 2} or {2, 1}.
In the second case, another possible answer is {2, 4, 5, 1, 3}.
sol:容易发现对于有且仅有一个序列只有1,有且仅有2个序列只有1,2······
这样就可以对每行维护一个前缀和表示该行数字1~i的数字出现的次数和,然后从1到n一个个数字填过去即可
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n;
int a[N][N],Ges[N][N];
int Ans[N];
bool Arr[N];
int main()
{
int i,j;
R(n);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
R(a[i][j]);
Ges[i][a[i][j]]++;
}
for(j=;j<=n;j++) Ges[i][j]=Ges[i][j-]+Ges[i][j];
}
for(i=;i<=n;i++)
{
for(j=;j<=n;j++) if((Ges[j][i]==n-)&&(!Arr[j]))
{
Ans[j]=i;
Arr[j]=;
break;
}
}
for(i=;i<=n;i++) W(Ans[i]);
return ;
}
/*
input
2
0 1
1 0
output
2 1 或 1 2 input
5
0 2 2 1 2
2 0 4 1 3
2 4 0 1 3
1 1 1 0 1
2 3 3 1 0
output
2 5 4 1 3 或 2 4 5 1 3
*/
codeforces618B的更多相关文章
随机推荐
- 洛谷 P1451 求细胞数量
题目链接 https://www.luogu.org/problemnew/show/P1451 题目描述 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字 ...
- LDAP2-创建OU创建用户
创建OU创建用户 1.创建OU 选择Organisational unit 组织单元 输入OU名称 提交信息 结果创建成功 2.创建员工 选择ou选择新建子条目 选择默认模板 选择inetorgper ...
- CentOS 6.5下RPM方式(重新)安装MySQL 5.7.21从头到尾篇
强烈推荐参阅这一篇教程 https://www.cnblogs.com/kevingrace/p/8340690.html 下面我写的仅供参考 今天把Mysql5.1升级到了5.7,浪费了一天为了避 ...
- C#中存储数据的集合:数组、集合、泛型、字典
为什么把这4个东西放在一起来说,因为c#中的这4个对象都是用来存储数据的集合……. 首先咱们把这4个对象都声明并实例化一下: //数组 ]; //集合 ArrayList m_AList = new ...
- Python股票分析系列——基础股票数据操作(二).p4
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第4部分.在本教程中,我们将基于Adj Close列创建烛台/ OHLC图,这将允许我介绍重新采 ...
- 简单使用redis实现sso单点登录
前面几篇分享了nosql只mongodb,今天简单分享另一个nosql神兵redis. 主要模仿sso单点登录,将登录人信息写入redis.话不多说,直接上马,驾. /// <summary&g ...
- sort 快排解决百万级的排序
问题:给n个整数,按从大到小的顺序,输出前m大的整数0<m,n<1000000,每个整数[-500000,500000]输入:5 33 -35 92 213 -644输出:213 92 3 ...
- docker之导出、导入、数据搬迁
docker 导出 导入有二种,一种是备份镜像,一种备份容器.数据搬迁,最简单粗暴就是直接COPY,volume的路径就行了. 一.导出导入镜像 #导出为tar docker save #ID or ...
- MySQL 主从同步遇到的问题及解决方案
在做某个项目的时候,使用主从数据库,master负责update.delete.insert操作,而slave负责select操作. 情景1:发表文章与查看文章 可以认为这个项目是一个博客系统,这里就 ...
- Drools 规则引擎
Drools - Drools - Business Rules Management System (Java™, Open Source) http://drools.org/ [Drools]J ...