题目描述

输入

输出

一个整数表示联盟里所有球队收益之和的最小值。

样例输入

3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1

样例输出

43

提示

 
要求总费用最低考虑最小费用最大流。对于一场比赛同时决策两支队伍谁输谁赢不好办,我们先假设剩下的比赛每支队伍都输了,这样每次只要决策谁赢了即可。对于每次比赛将源点连向比赛,流量为$1$、费用为$0$;再将比赛连向两支队伍,流量为$1$、费用为$0$。假设每支队伍还有$k[i]$场比赛,那么就将这只队伍向汇点连$k[i]$条边,流量为$1$,每条边费用为多赢一次的收益。每支队伍的起始收益为$C[i]*x^2+D[i]*y^2,x=win[i],y=lose[i]+k[i]$,每多赢一次的收益为$C*(x+1)^2+D*(y-1)^2-C*x^2-D*y^2=C*(2x+1)-D*(2y-1)$,因为$D\le C$,所以每多赢一次的收益会单调递增,又因为是最小费用最大流,所以一定先选赢一次的边、再选赢两次的边、再选赢三次的边……

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 10000000
using namespace std;
int head[10000];
int next[20000];
int to[20000];
int v[20000];
int c[20000];
int f[10000];
int from[20000];
int tot=1;
int S,T;
ll ans;
int n,m;
int x,y;
int s[10000];
int win[10000];
int lose[10000];
int C[10000];
int D[10000];
queue<int>q;
int vis[10000];
int d[10000];
void add(int x,int y,int z,int w)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
v[tot]=z;
c[tot]=w;
from[tot]=x;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
v[tot]=-z;
c[tot]=0;
from[tot]=y;
}
void result()
{
int now=T;
int flow=INF;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
ans+=1ll*d[T]*flow;
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
}
bool SPFA()
{
for(int i=1;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
q.push(S);
vis[S]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+v[i])
{
d[to[i]]=d[now]+v[i];
f[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void find_min()
{
while(SPFA())
{
result();
}
}
int main()
{
scanf("%d%d",&n,&m);
S=n+m+1;
T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&win[i],&lose[i],&C[i],&D[i]);
}
for(int i=1;i<=m;i++)
{
add(S,n+i,0,1);
scanf("%d%d",&x,&y);
s[x]++,s[y]++;
add(n+i,x,0,1);
add(n+i,y,0,1);
}
for(int i=1;i<=n;i++)
{
ans+=1ll*C[i]*win[i]*win[i]+1ll*D[i]*(lose[i]+s[i])*(lose[i]+s[i]);
x=win[i],y=lose[i]+s[i];
for(int j=1;j<=s[i];j++)
{
add(i,T,C[i]*(2*x+1)-D[i]*(2*y-1),1);
x++,y--;
}
}
find_min();
printf("%lld",ans);
}

BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流的更多相关文章

  1. [BZOJ1449] [JSOI2009]球队收益 / [BZOJ2895] 球队预算

    Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Cix^2+Diy^2,Di<=Ci.(赢得多,给球员的奖金就多嘛) ...

  2. 【BZOJ-1449&2895】球队收益&球队预算 最小费用最大流

    1449: [JSOI2009]球队收益 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 648  Solved: 364[Submit][Status][ ...

  3. 【BZOJ1449/2895】[JSOI2009]球队收益/球队预算 最小费用最大流

    [BZOJ2895]球队预算 Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Ci*x^2+Di*y^2,Di<=C ...

  4. 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)

    题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...

  5. HDU - 6437 Problem L.Videos 2018 Multi-University Training Contest 10 (最小费用最大流)

    题意:M个影片,其属性有开始时间S,结束时间T,类型op和权值val.有K个人,每个人可以看若干个时间不相交的影片,其获得的收益是这个影片的权值val,但如果观看的影片相邻为相同的属性,那么收益要减少 ...

  6. HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  8. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  9. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

随机推荐

  1. SpringBoot整合Shiro使用Ehcache等缓存无效问题

    前言 整合有缓存.事务的spring boot项目一切正常. 在该项目上整合shiro安全框架,发现部分类的缓存Cache不能正常使用. 然后发现该类的注解基本失效,包括事务Transaction注解 ...

  2. 实现可调整宽高的DIV(左右拖动和上下拖动)

    前言 本例是在React中实现,不过改一改通过原生js也很好实现,另外兼容性也做到了IE9.(IE8讲道理也是可以的). 首先看一下需要实现的需求: 要拖动图中的白色横条调整绿色和蓝色区域的高度,要拖 ...

  3. Python-collections模块-57

    返回顶部 模块的导入和使用 模块的导入应该在程序开始的地方 更多相关内容 http://www.cnblogs.com/Eva-J/articles/7292109.html   常用模块 colle ...

  4. Deflation Methods for Sparse PCA

    目录 背景 总括 Hotelling's deflation 公式 特点 Projection deflation 公式 特点 Schur complement deflation Orthogona ...

  5. XT535

    今天金山误删了一个文件,把手机系统整坏了,故刷了个机,刷机教程: http://bbs.dospy.com/thread-15027415-1-623-1.html 中间安装了个驱动精灵,否则手机开启 ...

  6. 软工+C(8): 提问与回复

    // 上一篇:野生程序员 // 下一篇:助教指南 在线上博客教学里引入了第三方助教,助教在每次作业期间尽力完成"消灭零点评"的目标.然而紧接而来的问题是:学生对博客作业点评的回复率 ...

  7. 局域网 服务器 https

    局域网内搭建一个服务器,可以使用 https 吗 - V2EXhttps://www.v2ex.com/t/472394 局域网内多台机器使用自签发证书架设https网站二:实施 - 左直拳的马桶_日 ...

  8. js判断手机机型,然后进行相对应的操作

    我们通过浏览器内置的userAgent来判断手机机型. 具体代码如下: var u = navigator.userAgent, app = navigator.appVersion; if(/App ...

  9. C#复习笔记(4)--C#3:革新写代码的方式(扩展方法)

    扩展方法 扩展方法有以下几个需求: 你想为一个类型添加一些 成员: 你不需要为类型的实例添加任何更多的数据: 你不能改变类型本身, 因为是别人的代码. 对于C#1和C#2中的静态方法,扩展方法是一种更 ...

  10. flex实现三栏等分布局

    前言 在实际开发中,我们经常会想要实现的一种布局方式就是三栏等分布局,那么我们如何来解决这个问题呢? 解决 方法一:flex 外层容器也就是ul设置display:flex,对项目也就是li设置fle ...