BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流
题目描述

输入

输出
样例输入
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1
样例输出
提示
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 10000000
using namespace std;
int head[10000];
int next[20000];
int to[20000];
int v[20000];
int c[20000];
int f[10000];
int from[20000];
int tot=1;
int S,T;
ll ans;
int n,m;
int x,y;
int s[10000];
int win[10000];
int lose[10000];
int C[10000];
int D[10000];
queue<int>q;
int vis[10000];
int d[10000];
void add(int x,int y,int z,int w)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
v[tot]=z;
c[tot]=w;
from[tot]=x;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
v[tot]=-z;
c[tot]=0;
from[tot]=y;
}
void result()
{
int now=T;
int flow=INF;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
ans+=1ll*d[T]*flow;
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
}
bool SPFA()
{
for(int i=1;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
q.push(S);
vis[S]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+v[i])
{
d[to[i]]=d[now]+v[i];
f[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void find_min()
{
while(SPFA())
{
result();
}
}
int main()
{
scanf("%d%d",&n,&m);
S=n+m+1;
T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&win[i],&lose[i],&C[i],&D[i]);
}
for(int i=1;i<=m;i++)
{
add(S,n+i,0,1);
scanf("%d%d",&x,&y);
s[x]++,s[y]++;
add(n+i,x,0,1);
add(n+i,y,0,1);
}
for(int i=1;i<=n;i++)
{
ans+=1ll*C[i]*win[i]*win[i]+1ll*D[i]*(lose[i]+s[i])*(lose[i]+s[i]);
x=win[i],y=lose[i]+s[i];
for(int j=1;j<=s[i];j++)
{
add(i,T,C[i]*(2*x+1)-D[i]*(2*y-1),1);
x++,y--;
}
}
find_min();
printf("%lld",ans);
}
BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流的更多相关文章
- [BZOJ1449] [JSOI2009]球队收益 / [BZOJ2895] 球队预算
Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Cix^2+Diy^2,Di<=Ci.(赢得多,给球员的奖金就多嘛) ...
- 【BZOJ-1449&2895】球队收益&球队预算 最小费用最大流
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 648 Solved: 364[Submit][Status][ ...
- 【BZOJ1449/2895】[JSOI2009]球队收益/球队预算 最小费用最大流
[BZOJ2895]球队预算 Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Ci*x^2+Di*y^2,Di<=C ...
- 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)
题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...
- HDU - 6437 Problem L.Videos 2018 Multi-University Training Contest 10 (最小费用最大流)
题意:M个影片,其属性有开始时间S,结束时间T,类型op和权值val.有K个人,每个人可以看若干个时间不相交的影片,其获得的收益是这个影片的权值val,但如果观看的影片相邻为相同的属性,那么收益要减少 ...
- HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
- bzoj1927最小费用最大流
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→ =_=你TM逗我 刚要删突然感觉dinic的模 ...
- ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...
随机推荐
- 跨域访问-需要设置HTTP响应标头
前提:服务端网站的配置(被请求的网站) 1.需要在IIS服务器站点的功能视图中设置HTTP响应标头: 2.双击“HTTP响应标头”进入设置界面 3.点击右侧添加按钮弹出窗口 4.填入需要设置的信息 名 ...
- python 可调用对象之类实例
可调用对象,即任何可以通过函数操作符()来调用的对象. python可调用对象大致可以分为4类: 1.函数 python中有三种函数:内建函数(BIFs).用户自定义函数(UDF).lambda表达式 ...
- H5 60-浮动元素排序规则
60-浮动元素排序规则 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...
- Python—包介绍
包(Package) 当你的模块文件越来越多,就需要对模块文件进行划分,比如把负责跟数据库交互的都放一个文件夹,把与页面交互相关的放一个文件夹, . └── my_proj ├── crm #代码目录 ...
- UnderWater+SDN论文之五
Underwater Sensor Networks with Mobile Agents: Experience from the Field Source: LNICST 2013 论文是来自两个 ...
- 2017软工实践K班总结
回首一学期的软工实践,从暑假开始陆续布置作业,经历个人.结对与团队等大小作业.也经历了不少同学被吓跑.第一周就退选的情况,能坚持下来的都是胜利者,至少你们有一颗愿意挑战的心.首先感谢助教谢涛付出的巨大 ...
- T-shirt buying CodeForces - 799B (小根堆+STL)
题目链接 思路: 由于题目说了只有1,2,3,三种色号的衣服,然后开三个对应色号的小根堆, 我是根据pair<int,int> 创建了一个以价格小的优先的优先队列. pair中的另外一个i ...
- Dubbo负载均衡与集群容错机制
1 Dubbo简介 Dubbo是一款高性能.轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现. 作为一个轻量级RPC框架,D ...
- Eclipse中Git的使用以及IDEA中Git的使用
一.Eclipse中Git解决冲突步骤: 1.进行文件对比,将所有的文件添加到序列. 2.commit文件到本地仓库. 3.pull将远程仓库的代码更新到本地,若有冲突则会所有的文件显示冲突状态(真正 ...
- DOM节点左右移动
闲来没事写了个小demo,原本是回答别人博问的,有人比我更快的给出了链接,想想半途而废也不好,就写完了,写个博文记录一下(效果是按照我自己来的,可能和最早别人问的不太一样,反正无关紧要啦) 直接上co ...