/*
给定n,对于所有的对(i,j),i<j,求出sum{gcd(i,j)}
有递推式sum[n]=sum[n-1]+f[n]
其中f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n)......
那么如何求出f[n],
设满足gcd(i,n)=x的组合有g(x,n)个,那么f[n]=sum{x*g(x,n)}
对于gcd(i,n)=x,即有gcd(i/x,n/x)=1,因为将n/x看做是固定的数,那么g(x,n)=phi[n/x]
求答案时直接先求出所有答案,因为枚举n的每个因子比较麻烦,所以直接枚举x即可,
那么由上述公式可推出==>f[x*t]+=x*phi[t]
筛出phi表
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 4000005
//#define ll long long bool check[maxn+];
int phi[maxn+],prime[maxn+],tot;
void init(){
memset(check,,sizeof check);
phi[]=;tot=;
for(int i=;i<=maxn;i++){
if(check[i]==){
prime[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*prime[j]>maxn)break;
check[i*prime[j]]=;
if(i%prime[j]==){//prime[j]是i的因子
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} long long f[maxn],s[maxn];
int main(){
init();
for(int i=;i<=maxn;i++)//枚举每个因数x
for(int j=i+i;j<=maxn;j+=i)//
f[j]+=(long long)i*phi[j/i];
for(int i=;i<=maxn;i++)
s[i]=s[i-]+f[i]; int n;
while(cin>>n,n)
cout<<s[n]<<endl;
}

uva11426 欧拉函数应用,kuangbin的筛法模板的更多相关文章

  1. UVA11426 欧拉函数

    大白书P125 #include <iostream> #include <cstring> using namespace std; #define MMX 4000010 ...

  2. poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

    http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...

  3. 线性筛的同时得到欧拉函数 (KuangBin板子)

    线性筛的思想:每个被筛的数是通过它最小的质因子所筛去的. 这种思想保证了每个数只会被筛一次,从而达到线性.并且,这个思想实现起来非常巧妙(见代码注释)! 因为线性筛的操作中用到了倍数的关系去实现,因此 ...

  4. uva11426 欧拉函数应用

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=121873#problem/F 题目大意:给你一个数n,让你输出(i=1-> ...

  5. 欧拉函数 & 【POJ】2478 Farey Sequence & 【HDU】2824 The Euler function

    http://poj.org/problem?id=2478 http://acm.hdu.edu.cn/showproblem.php?pid=2824 欧拉函数模板裸题,有两种方法求出所有的欧拉函 ...

  6. 欧拉函数 &【POJ 2478】欧拉筛法

    通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...

  7. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  8. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  9. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

随机推荐

  1. A - Arcade Game Gym - 100814A (概率思维题)

    题目链接:https://cn.vjudge.net/contest/285964#problem/A 题目大意:每一次给你你一个数,然后对于每一次操作,可以将当前的数的每一位互换,如果互换后的数小于 ...

  2. 经典视觉SLAM框架

    经典视觉SLAM框架 整个视觉SLAM流程包括以下步骤: 1. 传感器信息读取.在视觉SLAM中主要为相机图像信息的读取和预处理. 2. 视觉里程计(Visual Odometry,VO).视觉里程计 ...

  3. python第一天,简单输出及基本运算符

    1.安装步骤网上很多详细的图文资料,这里就不一一赘述. 我的环境:win7 64bit +python-3.7.0b2 2.简单的输出(3.0之后和之前的版本略有不同) 1)打开控制台输入python ...

  4. Curator实现分布式锁

    分布式锁的应用 分布式锁服务宕机, ZooKeeper 一般是以集群部署, 如果出现 ZooKeeper 宕机, 那么只要当前正常的服务器超过集群的半数, 依然可以正常提供服务 持有锁资源服务器宕机, ...

  5. CF1100D Dasha and Chess

    题目地址:CF1100D Dasha and Chess 这是我的第一道交互题 思路不难,主要讲讲这条语句: fflush(stdout); stdout是标准输出的意思.因为有时候,我们输出到std ...

  6. SpringSecurity如何在代码中获取认证用户信息

    ⒈ public Object getCurrentUser(){ return SecurityContextHolder.getContext().getAuthentication(); } ⒉ ...

  7. 【Nginx】Nginx简介及在CentOS7.0下安装教程

    是什么 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.其特点是占有内存少,并发能力强,事实上nginx的并发能 ...

  8. 【转】Python 面向对象(初级篇)

    [转]Python 面向对象(初级篇) 51CTO同步发布地址:http://3060674.blog.51cto.com/3050674/1689163 概述 面向过程:根据业务逻辑从上到下写垒代码 ...

  9. Euclideanloss_layer层解析

    这里说一下euclidean_loss_layer.cpp关于该欧式loss层的解析,代码如下: #include <vector> #include "caffe/layers ...

  10. k64 datasheet学习笔记3---Chip Configuration之Analog

    1.前言 本文主要讲述K64芯片配置,关于模拟部分的内容,主要包括:ADC, CMP, DAC, VREF 2.16bit SAR ADC 从上图可以看出ADC主要挂在外设总线0上,由于ADC的输入引 ...