#coding=utf-8
import tensorflow as tf
import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data
#需要自己从网上下载Mnist数据集
mnist = input_data.read_data_sets("D:/MNIST", one_hot=False) learning_rate = 0.01
training_epochs = 10
batch_size = 256
display_step = 1
n_input = 784
X = tf.placeholder("float", [None, n_input]) n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2
weights = {
'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], )),
'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2], )),
'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3], )),
'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4], )),
'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3], )),
'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2], )),
'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1], )),
'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input], )),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
# 为了便于编码层的输出,编码层随后一层不使用激活函数
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 encoder_op = encoder(X)
decoder_op = decoder(encoder_op) y_pred = decoder_op
y_true = X
#使用平均误差最小化损失函数
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!")
encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
plt.colorbar()
plt.show()

结果:每一种颜色代表一种数字,这里是为了可视化才降到2维的,但是实际降维的时候,肯定不会把维度降到这么低的水平。

使用Autoencoder进行降维的更多相关文章

  1. CNN autoencoder 先降维再使用kmeans进行图像聚类 是不是也可以降维以后进行iforest处理?

    import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers ...

  2. 论文阅读 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https ...

  3. keras使用AutoEncoder对mnist数据降维

    import keras import matplotlib.pyplot as plt from keras.datasets import mnist (x_train, _), (x_test, ...

  4. PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...

  5. 降噪自动编码器(Denoising Autoencoder)

    起源:PCA.特征提取.... 随着一些奇怪的高维数据出现,比如图像.语音,传统的统计学-机器学习方法遇到了前所未有的挑战. 数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效.数据挖 ...

  6. Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记

    前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...

  7. Autoencoder

    AutoencoderFrom Wikipedia An autoencoder, autoassociator or Diabolo network[1]:19 is an artificial n ...

  8. Deep learning:三十四(用NN实现数据的降维)

    数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of d ...

  9. 一周总结:AutoEncoder、Inception 、模型搭建及下周计划

    一周总结:AutoEncoder.Inception .模型搭建及下周计划   1.AutoEncoder: AutoEncoder: 自动编码器就是一种尽可能复现输入信号的神经网络:自动编码器必须捕 ...

随机推荐

  1. switch_case注意事项

    1.switch 语句有至少一个 case 代码块和一个可选的 default 代码块. 这里的 switch 从第一个 case 分支比较 a 的值,值为 3 匹配失败.然后比较 4.匹配,所以从  ...

  2. ztree模糊筛选展开选中节点

    树呢是一个最简单的树,并没有做一异步加载,也就是一个筛选,然后跳到第一个符合删选的数据下,并且所有符合的都会被展开和选中.其中ztreeAry是一个模拟的本地数组json.在test.json中,如果 ...

  3. laravel seed填充数据步骤

  4. 学习笔记CB010:递归神经网络、LSTM、自动抓取字幕

    递归神经网络可存储记忆神经网络,LSTM是其中一种,在NLP领域应用效果不错. 递归神经网络(RNN),时间递归神经网络(recurrent neural network),结构递归神经网络(recu ...

  5. 在经过身份验证的服务中不支持跨域 javascript 回调

    在 asp.net web forms 站点中做了一个 wcf restful service 接口,开启了webforms 身份认证. 当 webforms 站点用户登录之后,访问 restful ...

  6. C语言 基础

    内存的定义 在学习python的时候 了解过内存的管理机制,例如引用计数,垃圾回收,小内存池的概念. 但是并不了解内存究竟是个什么东西?不了解内存的实际存储方式. Mac OS Mojave 处理器 ...

  7. 获取【请求体】数据的3种方式(精)(文末代码) request.getInputStream() request.getInputStream() request.getReader()

    application/x- www-form-urlencoded是Post请求默认的请求体内容类型,也是form表单默认的类型.Servlet API规范中对该类型的请求内容提供了request. ...

  8. MySQL Hardware--网络测试

    使用Ping测试丢包 ## ping测试 ## -c 100表示100次 ping -c 100 192.168.1.2 输出结果: ping -c 100 192.168.1.2 PING 192. ...

  9. Java高级特性 第12节 XML技术

    一.XML简介 1. XML介绍 XML是可扩展标记语言(Extensible Markup Language ),XML是一种数据格式,类似 HTML,是使用标签进行内容描述的技术,与HTML不同的 ...

  10. linux一些工具的安装(二)

    一.Linux下安装lrzsz上传下载工具 1:使用yum安装 yum -y install lrzsz  要有网络才行 输入命令:rz启动文件上传 2:手动编译安装 1. 下载安装包,wget ht ...