HNOI2016 Day2 T3 大数

Description

  小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345
。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也
是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素
数7的倍数。

Input

  第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的
子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 2
13。N,M<=100000,P为素数

Output

  输出M行,每行一个整数,第 i行是第 i个询问的答案。

Sample Input

11
121121
3
1 6
1 5
1 4

Sample Output

5
3
2
//第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。

正解:莫队算法

解题报告:

  大概题意:给一串数和一个质数,然后每次询问一段区间,问对于这一个区间,有多少个子串组成的大数能够整除这个质数  

  今天为了做这道题先去学了莫队算法,然后A掉了莫队算法的入门题目——小Z的袜子。

  考场上面我傻逼的打了一个高精度,华丽丢掉暴力分。然而我发现只需要取个模就可以了,考场上傻了。

  学完莫队算法之后,发现这道题其实就是一个裸题。

  一开始依然是莫队算法的方式,按左端点所在块的编号为第一关键字,右端点编号为第二关键字排序,

  考虑先暴力处理每个块的第一组询问,之后可以发现我们只需要微调一下区间的左右端点就可以了。比如说:我上次处理了1 5,那么1 6就可以只把6加进去就可以了;如果这      一次是2 6,那么我还需要把1给去掉。

  考虑怎么转移:先离散化一下余数,记录[l, r]中这个数出现了几次,区间长度±1时显然答案改变值为这个点的余数的原出现次数(假设第一个数余数为2,用cnt[2]表示余数为2的数在当前区间的出现次数,那么去掉1之后答案改变值为cnt[2],自己yy一下应该想得通的)。

然后好像很有道理了,AC了?!好吧,其实是善良的出题人没有卡我们,其实p = 2 或 p = 5的情况是可以被卡掉的

  特判一下就好了,两个数组分别表示[1, i]中2或5的倍数时有多少种情况及有多少个数末尾是2或5的倍数,用前缀和维护。

  这样就可以完美AC了,可以过掉BZOJ上的新增数据了

  下面这份是没改过的,不要怪我懒QAQ

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int MAXN = 200011;
int MOD,m,len,l,r,block,L;
LL ans,A[MAXN],cnt[MAXN],a[MAXN],c[MAXN];
char ch[MAXN];
struct ask{int l,r,belong,id;}Q[MAXN];
inline bool cmp(ask q,ask qq){ if(q.belong==qq.belong) return q.r<qq.r; return q.belong<qq.belong; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void change(int val,int type){
ans-=cnt[val]*(cnt[val]-1)/2;
cnt[val]+=type;
ans+=cnt[val]*(cnt[val]-1)/2;
} inline void work(){
MOD=getint(); scanf("%s",ch+1); len=strlen(ch+1); LL/*!!!*/ now=0,ss=1; now=ch[len]-'0'; a[len]=now%MOD; c[len]=a[len];
block=sqrt(len); for(int i=len-1;i>=1;i--) { ss*=10; ss%=MOD; now+=ss*(ch[i]-'0'); now%=MOD; a[i]=now; c[i]=a[i]; }
sort(c+1,c+len+1); L=unique(c+1,c+len+1)-c-1; for(int i=1;i<=len;i++) a[i]=lower_bound(c+1,c+len+1,a[i])-c;
if(c[1]==0) a[len+1]=1; else a[len+1]=0;/*!!!*/
m=getint(); for(int i=1;i<=m;i++) Q[i].l=getint(),Q[i].r=getint(),Q[i].belong=(Q[i].l-1)/block+1,Q[i].id=i;
sort(Q+1,Q+m+1,cmp); l=1; r=0;
for(int i=1;i<=m;i++) {
while(r<=Q[i].r) r++,change(a[r],1);
while(r>Q[i].r+1) change(a[r],-1),r--;
while(l<Q[i].l) change(a[l],-1),l++;
while(l>Q[i].l) l--,change(a[l],1);
A[Q[i].id]=ans;
}
for(int i=1;i<=m;i++) printf("%lld\n",A[i]);
} int main()
{
work();
return 0;
}

  

HNOI2016(BZOJ4542) 大数的更多相关文章

  1. 【HNOI2016】大数

    [HNOI2016]大数 题目链接 题目描述 小 B 有一个很大的数 $ S $,长度达到了 $ N $ 位:这个数可以看成是一个串,它可能有前导 $ 0 $,例如 00009312345 .小 B ...

  2. 「HNOI2016」大数

    题目描述 给定一个质数\(p\)和一个数字序列,每次询问一段区间\([l,r]\), 求出该序列区间\([l,r]\)内的所有子串,满足该子串所形成的数是\(p\)的倍数(样例的解释也挺直观的) 基本 ...

  3. bzoj4542 大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  4. loj2053 「HNOI2016」大数

    ref #include <algorithm> #include <iostream> #include <cstring> #include <cstdi ...

  5. HNOI做题记录

    算是--咕完了? 2013.2014的就咕了吧,年代太久远了,并且要做的题还有那么多-- LOJ #2112. 「HNOI2015」亚瑟王 发现打出的概率只和被经过几次有关. 于是\(dp_{i,j} ...

  6. 【BZOJ4542】[Hnoi2016]大数 莫队

    [BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...

  7. 【bzoj4542】 Hnoi2016—大数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4542 (题目链接) 题意 给出一个素数$P$,一个数串$S$,$m$个询问,每次询问区间$[l,r] ...

  8. BZOJ4542: [Hnoi2016]大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  9. [BZOJ4542] [Hnoi2016] 大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

随机推荐

  1. matlab:启动后无法调用工具包

    matlab有时候一打开会出现warning,然后任何工具包(包括set path)都执行不了,在网上找到解决方法,存下来备用. 1. 在matlab的command里输入: restoredefau ...

  2. Html5 Egret游戏开发 成语大挑战(五)界面切换和数据处理

    经过前面的制作,使用Egret的Wing很快完成了开始界面和选关卡界面,下面通常来说就是游戏界面,但此时界面切换和关卡数据还没有准备好,这次讲解界面的切换和关卡数据的解析.前面多次修改了Main.ts ...

  3. 批量修改string中的字符

    #1,修改"/"为"\\",多用于在txt读取内容后进行修改 size_t pos0 = mkfolder.find("/");//首次查找 ...

  4. 基于ASP.NET MVC的热插拔模块式开发框架(OrchardNoCMS)--AOP编程

    AOP编程在目前来说好像是大家都比较喜欢的.ASP.NET MVC中的Filter就是使用AOP实现的配置器模式.AOP在编码中的应用主要有如下几个方面: 日志记录,跟踪,优化和监控 事务的处理 持久 ...

  5. Apache Shiro 使用手册(一)Shiro架构介绍 - kdboy - ITeye技术网站

    转载 原文地址 http://kdboy.iteye.com/blog/1154644 一.什么是Shiro Apache Shiro是一个强大易用的Java安全框架,提供了认证.授权.加密和会话管理 ...

  6. 多线程下HashMap的死循环问题

    多线程下[HashMap]的问题: 1.多线程put操作后,get操作导致死循环.2.多线程put非NULL元素后,get操作得到NULL值.3.多线程put操作,导致元素丢失. 本次主要关注[Has ...

  7. HDU2444-The Accomodation of Students-判断是否为二分图+ISAP

    要先判断是不是二分图.用黑白染色法. 遇到已经染过的跟当前的颜色相同时就说明不是二分图,也即出现了奇环 /*---------------------------------------------- ...

  8. struts2 Result Type四个常用转跳类型

    Result的四个常用转跳类型分别为 Dispatcher 用来转向页面,是Struts的默认形式 Redirect   重定向到一个URL Chain  用来处理Action链 RedirectAc ...

  9. opencv6.3-imgproc图像处理模块之边缘检测

    接opencv6.2-improc图像处理模块之图像尺寸上的操作 本文大部分都是来自于转http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutori ...

  10. requirejs:性能优化-及早并行加载

    为了提高页面的性能,通常情况下,我们希望资源尽可能地早地并行加载.这里有两个要点,首先是尽早,其次是并行. 通过data-main方式加载要尽可能地避免,因为它让requirejs.业务代码不必要地串 ...