HNOI2016(BZOJ4542) 大数
HNOI2016 Day2 T3 大数
Description
小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345
。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也
是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素
数7的倍数。
Input
第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的
子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 2
13。N,M<=100000,P为素数
Output
输出M行,每行一个整数,第 i行是第 i个询问的答案。
Sample Input
121121
3
1 6
1 5
1 4
Sample Output
3
2
//第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。
正解:莫队算法
解题报告:
大概题意:给一串数和一个质数,然后每次询问一段区间,问对于这一个区间,有多少个子串组成的大数能够整除这个质数
今天为了做这道题先去学了莫队算法,然后A掉了莫队算法的入门题目——小Z的袜子。
考场上面我傻逼的打了一个高精度,华丽丢掉暴力分。然而我发现只需要取个模就可以了,考场上傻了。
学完莫队算法之后,发现这道题其实就是一个裸题。
一开始依然是莫队算法的方式,按左端点所在块的编号为第一关键字,右端点编号为第二关键字排序,
考虑先暴力处理每个块的第一组询问,之后可以发现我们只需要微调一下区间的左右端点就可以了。比如说:我上次处理了1 5,那么1 6就可以只把6加进去就可以了;如果这 一次是2 6,那么我还需要把1给去掉。
考虑怎么转移:先离散化一下余数,记录[l, r]中这个数出现了几次,区间长度±1时显然答案改变值为这个点的余数的原出现次数(假设第一个数余数为2,用cnt[2]表示余数为2的数在当前区间的出现次数,那么去掉1之后答案改变值为cnt[2],自己yy一下应该想得通的)。
然后好像很有道理了,AC了?!好吧,其实是善良的出题人没有卡我们,其实p = 2 或 p = 5的情况是可以被卡掉的
特判一下就好了,两个数组分别表示[1, i]中2或5的倍数时有多少种情况及有多少个数末尾是2或5的倍数,用前缀和维护。
这样就可以完美AC了,可以过掉BZOJ上的新增数据了
下面这份是没改过的,不要怪我懒QAQ
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int MAXN = 200011;
int MOD,m,len,l,r,block,L;
LL ans,A[MAXN],cnt[MAXN],a[MAXN],c[MAXN];
char ch[MAXN];
struct ask{int l,r,belong,id;}Q[MAXN];
inline bool cmp(ask q,ask qq){ if(q.belong==qq.belong) return q.r<qq.r; return q.belong<qq.belong; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void change(int val,int type){
ans-=cnt[val]*(cnt[val]-1)/2;
cnt[val]+=type;
ans+=cnt[val]*(cnt[val]-1)/2;
} inline void work(){
MOD=getint(); scanf("%s",ch+1); len=strlen(ch+1); LL/*!!!*/ now=0,ss=1; now=ch[len]-'0'; a[len]=now%MOD; c[len]=a[len];
block=sqrt(len); for(int i=len-1;i>=1;i--) { ss*=10; ss%=MOD; now+=ss*(ch[i]-'0'); now%=MOD; a[i]=now; c[i]=a[i]; }
sort(c+1,c+len+1); L=unique(c+1,c+len+1)-c-1; for(int i=1;i<=len;i++) a[i]=lower_bound(c+1,c+len+1,a[i])-c;
if(c[1]==0) a[len+1]=1; else a[len+1]=0;/*!!!*/
m=getint(); for(int i=1;i<=m;i++) Q[i].l=getint(),Q[i].r=getint(),Q[i].belong=(Q[i].l-1)/block+1,Q[i].id=i;
sort(Q+1,Q+m+1,cmp); l=1; r=0;
for(int i=1;i<=m;i++) {
while(r<=Q[i].r) r++,change(a[r],1);
while(r>Q[i].r+1) change(a[r],-1),r--;
while(l<Q[i].l) change(a[l],-1),l++;
while(l>Q[i].l) l--,change(a[l],1);
A[Q[i].id]=ans;
}
for(int i=1;i<=m;i++) printf("%lld\n",A[i]);
} int main()
{
work();
return 0;
}
HNOI2016(BZOJ4542) 大数的更多相关文章
- 【HNOI2016】大数
[HNOI2016]大数 题目链接 题目描述 小 B 有一个很大的数 $ S $,长度达到了 $ N $ 位:这个数可以看成是一个串,它可能有前导 $ 0 $,例如 00009312345 .小 B ...
- 「HNOI2016」大数
题目描述 给定一个质数\(p\)和一个数字序列,每次询问一段区间\([l,r]\), 求出该序列区间\([l,r]\)内的所有子串,满足该子串所形成的数是\(p\)的倍数(样例的解释也挺直观的) 基本 ...
- bzoj4542 大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- loj2053 「HNOI2016」大数
ref #include <algorithm> #include <iostream> #include <cstring> #include <cstdi ...
- HNOI做题记录
算是--咕完了? 2013.2014的就咕了吧,年代太久远了,并且要做的题还有那么多-- LOJ #2112. 「HNOI2015」亚瑟王 发现打出的概率只和被经过几次有关. 于是\(dp_{i,j} ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- 【bzoj4542】 Hnoi2016—大数
http://www.lydsy.com/JudgeOnline/problem.php?id=4542 (题目链接) 题意 给出一个素数$P$,一个数串$S$,$m$个询问,每次询问区间$[l,r] ...
- BZOJ4542: [Hnoi2016]大数
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
随机推荐
- jQuery offset,position,offsetParent,scrollLeft,scrollTop html控件定位 css position
定位应用:点击一个按钮,然后在按钮的右边弹出一个提示框 1,提示框相对于屏幕进行定位,那么使用offset来取得当前按钮相对于body的top和left,然后通过$('body').prepend(t ...
- linux传输大文件
http://dreamway.blog.51cto.com/1281816/1151886 linux传输大文件
- 纯手工搭建JSF开发环境(JSF2.2+maven+weblogic 12c/jboss EAP 6.1+)
前言: JSF 2.X因为种种原因(我个人觉得主要是因为推出太晚),再加上EJB2之前的设计过于复杂,引起很多开发人员对官方解决方案的反感,即使EJB3后来做了大量改进,国内也很少有人对EJB3感兴趣 ...
- 强迫症的福利——我的第一个VS插件,对using排序!
首先来看看VS自带的using整理功能: 长短不一,看着让人生厌!这是哪个门子的整理?越来越乱了好吗! 难道就没有一款,由短到长——金字塔搬的排序方案吗? 于是各种百度: “VS 插件 using排序 ...
- .NET基于Redis缓存实现单点登录SSO的解决方案
一.基本概念 最近公司的多个业务系统要统一整合使用同一个登录,这就是我们耳熟能详的单点登录,现在就NET基于Redis缓存实现单点登录做一个简单的分享. 单点登录(Single Sign On),简称 ...
- versionCompare 版本号比较工具
简介 需求非常简单,需要比较软件或app的版本号,判断大小,形如 0.10.2形式的版本号字符串.实现逻辑是按照点(.)分割字符串,然后逐级比较版本大小.不存在的按0处理,空字符串小于非空字符串. 测 ...
- 系统升级日记(1)- 升级到SQL Server 2012
最近一段时间在公司忙于将各类系统进行升级,其最主要的目标有两个,一个是将TFS2010升级到TFS2013,另外一个是将SharePoint 2010升级到SharePoint 2013.本记录旨在记 ...
- Web Api 2 接口API文档美化
使用用第三方提供的swgger ui 帮助提高 web api 接口列表的阅读性,并且可以在页面中测试服务接口. 运行程序如下: 注意:在IE中必须输入红色部分. 并且可以对方法进行测试. 在开发we ...
- CSS3 transform原点设置
以左上角为原点 -moz-transform-origin: 0 0; -webkit-transform-origin:0 0; -o-transform-origin:0 0; 以右上角给原点 - ...
- python代码缩进
习惯了java,c++之类的宽容,初学python,被它摆了道下马威,写if else,竟然必须要我正确用缩进格式,原来在python里不能用括号来表示语句块,也不能用开始/结束标志符来表示,而是靠缩 ...