http://acm.hdu.edu.cn/showproblem.php?pid=3506

四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1

dp[i][j]表示第i--j堆合并成一堆的时候,所需的最小花费。

然后根据以前的,dp[i][j] = dp[i][k] + dp[k + 1][j] + cost

那么我就要去找那个位置k。

能够证明的就是,cost满足四边形不等式。

我们设w[i][j]表示第i--j个数的和。

引用一下:

 当函数w(i,j)满足 w(a,c)+w(b,d) <= w(b,c)+w(a,d) 且a<=b< c <=d 时,我们称w(i,j)满足四边形不等式。。
 
关于这个,其实是绝对相等的,不是大于。
证明如下。设sum[i]表示1--i的和
那么上面的不等式变成:
左边:sum[c] - sum[a - 1] + sum[d] - sum[b - 1] 
右边:sum[d] - sum[a - 1] + sum[c] - sum[b - 1];
是相等的。所以满足条件
 
当函数w(i, j)满足w(i', j) <= w(i, j'); i <= i' < j <= j' 时,称w关于关于区间包含关系单调。
这个很容易,画个图,很明显
 
于是有以下三个定理

定理一: 如果w同时满足四边形不等式 和 决策单调性 ,则d也满足四边形不等式
定理二:当定理一的条件满足时,让d[i,j]取最小值的k为K[i,j],则K[i,j-1]<=K[i,j]<=K[i+1,j] 
定理三:w为凸当且仅当w[i,j]+w[i+1,j+1]<=w[i+1,j]+w[i,j+1]

由定理三知 判断w是否为凸即判断 w[i,j+1]-w[i,j]的值随着i的增加是否递减 
于是求K值的时候K[i,j]只和K[i+1,j] 和 K[i,j-1]有关,所以 可以以i-j递增为顺序递推各个状态值最终求得结果  将O(n^3)转为O(n^2) 

 
 
 
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
int n;
const int maxn = 2e3 + ;
int dp[maxn][maxn];
int s[maxn][maxn];
int sum[maxn];
int a[maxn];
void work() {
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
a[i + n] = a[i];
}
n *= ;
for (int i = ; i <= n; ++i) {
dp[i][i] = ;
s[i][i] = i;
sum[i] = sum[i - ] + a[i];
}
for (int dis = ; dis <= n - ; ++dis) {
for (int be = ; be + dis <= n; ++be) {
int en = be + dis;
int tk = s[be][en];
dp[be][en] = inf;
for (int k = s[be][en - ]; k <= s[be + ][en]; ++k) {
if (k + > en) break;
int add = dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ];
if (dp[be][en] > add) {
dp[be][en] = add;
tk = k;
}
}
s[be][en] = tk;
}
}
int ans = inf;
for (int i = ; i <= n / ; ++i) {
ans = min(ans, dp[i][i + n / - ]);
}
cout << ans << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
while (scanf("%d", &n) != EOF) work();
return ;
}
 
 
 
今天看得lrj的书中介绍的 四边形优化  做个笔记,加强理解 

最有代价用d[i,j]表示 
d[i,j]=min{d[i,k-1]+d[k+1,j]}+w[i,j] 
其中w[i,j]=sum[i,j] 
四边形不等式   
     w[a,c]+w[b,d]<=w[b,c]+w[a,d](a<b<c<d) 就称其满足凸四边形不等式 
决策单调性 
     w[i,j]<=w[i',j']   ([i,j]属于[i',j']) 既 i'<=i<j<=j'

http://www.cnblogs.com/zxndgv/archive/2011/08/02/2125242.html

 

hdu 3506 Monkey Party 区间dp + 四边形不等式优化的更多相关文章

  1. hdu3506 Monkey Party (区间dp+四边形不等式优化)

    题意:给n堆石子,每次合并相邻两堆,花费是这两堆的石子个数之和(1和n相邻),求全部合并,最小总花费 若不要求相邻,可以贪心地合并最小的两堆.然而要求相邻就有反例 为了方便,我们可以把n个数再复制一遍 ...

  2. CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】

    问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...

  3. 区间dp+四边形不等式优化

    区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...

  4. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  5. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  6. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  7. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

  8. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  9. HDU-2829 Lawrence (DP+四边形不等式优化)

    题目大意:有n个敌方军火库呈直线排列,每个军火库有一个值vi,并且任意相邻的两个库之间都有通道相连.对于任意一条连起来的军火库链,它对我方的威胁可以用函数w(i,j)表示为:w(i,j)=vi*sum ...

随机推荐

  1. (转)WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE

    Main Menu Fortune.com       E-mail Tweet Facebook Linkedin Share icons By Roger Parloff Illustration ...

  2. 如何在IIS 7.5中部署Asp.Net MVC 5的网站

    0 Sign in to vote 系统是 windwos 2008 已经安装.Net 4.0 和 .Net 4.5 已经安装MVC4 的需要文件,MVC5 找不见下载地方,求各位大哥告知一下在哪里可 ...

  3. Vmware vsphere webservice sdk 连接打开慢的问题

    还在为VimService实例化速度慢的问题烦恼吗?这有一篇文章可以帮你解决问题,英文水平所限,就不翻译了,原文地址http://kb.vmware.com/selfservice/microsite ...

  4. windowDialog销毁页面的问题

    [结贴] windowDialog销毁页面的问题 [复制链接]     Ghost丶 15 主题 91 帖子 200 积分 中级会员 积分 200 发消息 1# 电梯直达    发表于 2015-8- ...

  5. javascript性能优化总结一(转载人家)

    一直在学习javascript,也有看过<犀利开发Jquery内核详解与实践>,对这本书的评价只有两个字犀利,可能是对javascript理解的还不够透彻异或是自己太笨,更多的是自己不擅于 ...

  6. url中参数以及callback后面的串

    最近在写一个京东的爬虫,在模拟其http请求访问评论时,遇到http://club.jd.com/productpage/p-1419543-s-0-t-0-p-0.html?callback=jQu ...

  7. 【转】前端精选文摘:BFC 神奇背后的原理

    BFC 已经是一个耳听熟闻的词语了,网上有许多关于 BFC 的文章,介绍了如何触发 BFC 以及 BFC 的一些用处(如清浮动,防止 margin 重叠等).虽然我知道如何利用 BFC 解决这些问题, ...

  8. SQL Server 2008 数据库镜像部署实例之二 配置镜像,实施手动故障转移

    SQL Server 2008 数据库镜像部署实例之二 配置镜像,实施手动故障转移 上一篇文章已经为配置镜像数据库做好了准备,接下来就要进入真正的配置阶段 一.在镜像数据库服务器上设置安全性并启动数据 ...

  9. Bellman算法

    Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...

  10. ubuntu下设置clion是使用clang和clang++

    链接 http://stackoverflow.com/questions/31725681/how-to-setup-clion-with-portable-clang-on-ubuntu I go ...