此对比说明了一件事:

如果是IO型应用,多线程有优势,

如果是CPU计算型应用,多线程没必要,还有实现锁呢。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from threading import Thread

class threads_object(Thread):
    def run(self):
        function_to_run()

class nothreads_object(object):
    def run(self):
        function_to_run()

def non_threaded(num_iter):
    funcs = []
    for i in range(int(num_iter)):
        funcs.append(nothreads_object())
    for i in funcs:
        i.run()

def threaded(num_threads):
    funcs = []
    for i in range(int(num_threads)):
        funcs.append(threads_object())
    for i in funcs:
        i.start()
    for i in funcs:
        i.join()

def function_to_run():
    a, b = 0, 1
    for i in range(10000):
        a, b = b, a + b
    '''
    import requests
    for i in range(10):
        requests.get("http://10.25.174.41/")
    '''

def show_results(func_name, results):
    print("%-23s %4.6f seconds" % (func_name, results))

if __name__ == "__main__":
    import sys
    from timeit import Timer

    repeat = 100
    number = 1
    number_threads = [1, 2, 4, 8]

    print('Starting tests')
    for i in number_threads:
        t = Timer("non_threaded(%s)" \
                  % i, "from __main__ import non_threaded")
        best_result =\
                    min(t.repeat(repeat=repeat, number=number))
        show_results("non_threaded (%s iters) "\
                     %i, best_result)
        t = Timer("threaded(%s)" \
                  % i, "from __main__ import threaded")
        best_result =\
                    min(t.repeat(repeat=repeat, number=number))
        show_results("threaded (%s iters) "\
                     %i, best_result)

    print ('Iterations complete')
        

python中多线程与非线程的执行性能对比的更多相关文章

  1. python中两种栈实现方式的性能对比

    在计算机的世界中,同一个问题,使用不同的数据结构和算法实现,所使用的资源有很大差别 为了方便量化python中算法的资源消耗,对性能做测试非常有必要,这里针对stack做了python语言 下的性能分 ...

  2. python中的进程、线程(threading、multiprocessing、Queue、subprocess)

    Python中的进程与线程 学习知识,我们不但要知其然,还是知其所以然.你做到了你就比别人NB. 我们先了解一下什么是进程和线程. 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CP ...

  3. Python 中多线程之 _thread

    _thread模块是python 中多线程操作的一种模块方式,主要的原理是派生出多线程,然后给线程加锁,当线程结束的 时候取消锁,然后执行主程序 thread 模块和锁对象的说明 start_new_ ...

  4. 通过编写聊天程序来熟悉python中多线程及socket的用法

    1.引言 Python中提供了丰富的开源库,方便开发者快速就搭建好自己所需要的应用程序.本文通过编写基于tcp/ip协议的通信程序来熟悉python中socket以及多线程的使用. 2.python中 ...

  5. python 中多个装饰器的执行顺序

    python 中多个装饰器的执行顺序: def wrapper1(f1): print('in wrapper1') def inner1(*args,**kwargs): print('in inn ...

  6. python采用 多进程/多线程/协程 写爬虫以及性能对比,牛逼的分分钟就将一个网站爬下来!

    首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是CPU,承担了所有的计算任务.一个CPU,在一个时间切片里只能运行一个程序. 从操作系统的角度: 进程和线程,都 ...

  7. Python 中的进程、线程、协程、同步、异步、回调

    进程和线程究竟是什么东西?传统网络服务模型是如何工作的?协程和线程的关系和区别有哪些?IO过程在什么时间发生? 一.上下文切换技术 简述 在进一步之前,让我们先回顾一下各种上下文切换技术. 不过首先说 ...

  8. python中多线程

    多线程 什么是多线程 开启线程的两种方式 进程和线程的区别 Thread对象的其他属性和方法 守护线程 死锁现象与递归锁 信号量.Event定时器 线程Queue 进程池和线程池 什么是多线程 在传统 ...

  9. Python中多线程与多进程的恩恩怨怨

    概念: 并发:当有多个线程在操作时,如果系统只有一个CPU,则它根本不可能真正同时进行一个以上的线程,它只能把CPU运行时间划分成若干个时间段,再将时间 段分配给各个线程执行,在一个时间段的线程代码运 ...

随机推荐

  1. Fibonacci 1

    Fibonacci 1 题面 \[F_0=0,F_1=1,F_n=F_{n-1}+F_{n-2}\] 给定\(n\),求 \[S(n)=\sum_{i=1}^{n}F_nF_{n-1}\] 数据格式 ...

  2. 【Java】嵌套For循环性能优化案例

    参考资料:http://cgs1999.iteye.com/blog/1596671 1 案例描述 某日,在JavaEye上看到一道面试题,题目是这样的:请对以下的代码进行优化 for (int i  ...

  3. 【Kubernetes】两篇文章 搞懂 K8s 的 fannel 网络原理

    近期公司的flannel网络很不稳定,花时间研究了下并且保证云端自动部署的网络能够正常work. 1.网络拓扑 拓扑如下:(点开看大图)  容器网卡通过docker0桥接到flannel0网卡,而每个 ...

  4. C语言也能干大事1

    今天看了个视频,叫C语言也能干大事,写了第一个WIN项目的代码,感觉特别好,就像以前刚刚学会写C语言一样, 然后就恶搞出一个东西,最后的结果就是这个东西退出不了了

  5. struts2 配置 struts.xml 提示

    1.这个提示通常是在 连网络的时候才可以看到 2.当没有网路的时候我们该如何配置呢? window -->preferences -->xml catelog -->user.... ...

  6. Intellij Idea 14 生成serialVersionUID的方法

    默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...

  7. strcpy vs memcpy

    [本文连接] http://www.cnblogs.com/hellogiser/p/strcpy_vs_memcpy.html [分析] strcpy和memcpy都是标准C库函数,它们有下面的特点 ...

  8. C#导入Exel

    ; try { ]; string[] NoExPrentFile = new string[] { "xls", "xlsx" }; ] || fileTyp ...

  9. Qt 文件处理

    1.删除目录下所有的文件 void deleteAllFiles(const QString& fileDir) { QDir dir(fileDir); if(!dir.exists()) ...

  10. ACM/ICPC 之 最短路径-dijkstra范例(ZOJ2750-POJ1135(ZOJ1298))

    最短路经典算法-dijkstra范例(两道),第一道是裸的dijkstra,第二道需要枚举所有边已找到可能的情况. ZOJ2750-Idiomatic Phrases Game 题意:见Code 题解 ...