链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038

2038: [2009国家集训队]小Z的袜子(hose)

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 6475  Solved: 3004
[Submit][Status][Discuss]

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

HINT

 

Source

版权所有者:莫涛

思路:莫队算法,从区间 l , r 转移到 l1, r1 需花代价|l - l1| +| r - r1|,分块后离线查询算法复杂度O(n * sqrt( n ) )

注意大视野OJ高精度用%lld

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<iostream>
using namespace std;
typedef long long LL;
const int N = ;
int a[N], cnt[N];
int blk;
LL tp;
struct ANS{
LL a, b;
LL gcd(LL a1, LL b1){
while(b1){
LL t = a1 % b1;
a1 = b1;
b1 = t;
}
return a1;
} void reduce(){
LL d = gcd(a, b);
a /= d;
b /= d;
}
}ans[N];
struct node{
LL l, r, i;
}q[N]; bool cmp(const node &a, const node &b){
if(a.l / blk != b.l / blk){
return a.l / blk < b.l / blk;
}else{
return a.r < b.r;
}
} inline void add(int x){
tp += * cnt[a[x]];
cnt[a[x]]++;
} inline void remove(int x){
cnt[a[x]]--;
tp -= * (cnt[a[x]]);
} void solve(int n, int m){
memset(cnt, , sizeof(cnt));
blk = (int)sqrt(n);
sort(q, q + m, cmp);
tp = ;
int l = , r = ;
for(int i = ; i < m; i++){
while(l < q[i].l){
remove(l);
l++;
}
while(l > q[i].l){
l--;
add(l);
}
while(r < q[i].r){
r++;
add(r);
}
while(r > q[i].r){
remove(r);
r--;
}
ans[q[i].i].a = tp;
ans[q[i].i].b = (LL)(r - l + ) * (r - l);
ans[q[i].i].reduce();
}
}
int main(){
int n, m;
while(~scanf("%d %d",&n, &m)){
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = ; i < m; i++){
scanf("%lld %lld", &q[i].l, &q[i].r);
q[i].i = i;
}
solve(n, m);
for(int i = ; i < m; i++){
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
}
return ;
}

莫队算法 2038: [2009国家集训队]小Z的袜子(hose)的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  3. 2038: [2009国家集训队]小Z的袜子(hose) (莫队算法)

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...

  4. 莫队算法 BOJ 2038 [2009国家集训队]小Z的袜子(hose)

    题目传送门 /* 莫队算法:求出[l, r]上取出两只相同袜子的个数. 莫队算法是离线处理一类区间不修改查询类问题的算法.如果你知道了[L,R]的答案,可以在O(1)的时间下得到 [L,R-1]和[L ...

  5. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

  9. 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9472  Solved: 4344 Desc ...

随机推荐

  1. Apple WatchKit 初探

    首先新建一个普通project即可. 然后添加WatchKit, file->new->target 直接NEXT后就能见到APPLE WATCH的编辑界面了. 因为apple watch ...

  2. 有向图寻找(一个)奇环 -- find an oddcycle in directed graph

    /// the original blog is http://www.cnblogs.com/tmzbot/p/5579020.html , automatic crawling without l ...

  3. mybatis动态SQL - like

    用'%${name}%'可以实现模糊查询,但会放开SQL注入漏洞. <when test="name != null and name!=''"> AND name l ...

  4. jquery学习——选择器

    一.基础选择 1.$("*") 选择所有元素 2.$(".class") 选择某个类 3.$("#id") 选择某个id 4.$(" ...

  5. Linux内核 TCP/IP、Socket参数调优

    Linux内核 TCP/IP.Socket参数调优 2014-06-06  Harrison....   阅 9611  转 165 转藏到我的图书馆   微信分享:   Doc1: /proc/sy ...

  6. 谷歌Chrome浏览器开发者工具的基础功能

    上一篇我们学习了谷歌Chrome浏览器开发者工具的基础功能,下面介绍的是Chrome开发工具中最有用的面板Sources.Sources面板几乎是最常用到的Chrome功能面板,也是解决一般问题的主要 ...

  7. C语言宏定义时#(井号)和##(双井号)的用法1

    #在英语里面叫做 pound 在C语言的宏定义中,一个#表示字符串化:两个#代表concatenate 举例如下: #include <iostream> void quit_comman ...

  8. 工作之余,花2个月时间系统学习前端和PHP

    http://www.jikexueyuan.com/path/web/ http://www.jikexueyuan.com/path/php/

  9. action 方法的访问

    Action中的方法的访问: 访问Action的中的方法,默认情况下只能访问execute方法.那么多次请求就不能提交到一个Action.能不能一个模块的多次请求提交到一个Action中? * 需要使 ...

  10. oracle,mybatis主键自增长

    <insert id="insert" parameterType="resource"> <selectKey resultType=&qu ...