莫队算法 2038: [2009国家集训队]小Z的袜子(hose)
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038
2038: [2009国家集训队]小Z的袜子(hose)
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 6475 Solved: 3004
[Submit][Status][Discuss]
Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
1 2 3 3 3 2
2 6
1 3
3 5
1 6
Sample Output
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
HINT
Source
思路:莫队算法,从区间 l , r 转移到 l1, r1 需花代价|l - l1| +| r - r1|,分块后离线查询算法复杂度O(n * sqrt( n ) )
注意大视野OJ高精度用%lld
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<iostream>
using namespace std;
typedef long long LL;
const int N = ;
int a[N], cnt[N];
int blk;
LL tp;
struct ANS{
LL a, b;
LL gcd(LL a1, LL b1){
while(b1){
LL t = a1 % b1;
a1 = b1;
b1 = t;
}
return a1;
} void reduce(){
LL d = gcd(a, b);
a /= d;
b /= d;
}
}ans[N];
struct node{
LL l, r, i;
}q[N]; bool cmp(const node &a, const node &b){
if(a.l / blk != b.l / blk){
return a.l / blk < b.l / blk;
}else{
return a.r < b.r;
}
} inline void add(int x){
tp += * cnt[a[x]];
cnt[a[x]]++;
} inline void remove(int x){
cnt[a[x]]--;
tp -= * (cnt[a[x]]);
} void solve(int n, int m){
memset(cnt, , sizeof(cnt));
blk = (int)sqrt(n);
sort(q, q + m, cmp);
tp = ;
int l = , r = ;
for(int i = ; i < m; i++){
while(l < q[i].l){
remove(l);
l++;
}
while(l > q[i].l){
l--;
add(l);
}
while(r < q[i].r){
r++;
add(r);
}
while(r > q[i].r){
remove(r);
r--;
}
ans[q[i].i].a = tp;
ans[q[i].i].b = (LL)(r - l + ) * (r - l);
ans[q[i].i].reduce();
}
}
int main(){
int n, m;
while(~scanf("%d %d",&n, &m)){
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = ; i < m; i++){
scanf("%lld %lld", &q[i].l, &q[i].r);
q[i].i = i;
}
solve(n, m);
for(int i = ; i < m; i++){
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
}
return ;
}
莫队算法 2038: [2009国家集训队]小Z的袜子(hose)的更多相关文章
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9894 Solved: 4561[Subm ...
- 2038: [2009国家集训队]小Z的袜子(hose) (莫队算法)
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...
- 莫队算法 BOJ 2038 [2009国家集训队]小Z的袜子(hose)
题目传送门 /* 莫队算法:求出[l, r]上取出两只相同袜子的个数. 莫队算法是离线处理一类区间不修改查询类问题的算法.如果你知道了[L,R]的答案,可以在O(1)的时间下得到 [L,R-1]和[L ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7676 Solved: 3509[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块
分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 2938 Solved: 13 ...
- 2038: [2009国家集训队]小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9472 Solved: 4344 Desc ...
随机推荐
- 微型Http服务器Tiny Http Server
Tiny Http Server 一个简单的跨平台Http服务器.服务器部分使用了Mongoose的代码,界面是使用QT开发的. 开发为了在临时需要使用一个http服务器来做发布代码文档的时候,不用去 ...
- svn下目录说明
Branch 目录 : 该SVN 的Branch目录下存放的是:跟工程项目相关的各个工程版本分支.该目录下面的版本分支可能会被修改合并.不是稳定的版本. Document 目录:该SVN 的Docum ...
- django操作数据库之查询F,Q操作 和 seach搜索功能
# F 使用查询条件的值 # # from django.db.models import F # models.Tb1.objects.update(num=F('num')+1) # Q 构建搜索 ...
- 使用Django——安装
1. 安装 a) 安装python 在http://www.python.org/上下载python 2.7,然后安装,接着将python的安装路径(一般是C:\python27)添加到windows ...
- int型整数中2进制中含有1的个数。
int func(x) { int countx =0; while(x) { countx ++; x = x&(x-1); } return countx; } 解释下思路: 1.任何一个 ...
- ios 单一线程中的Runloop机制会导致线程安全问题吗?
今天在处理多线程突然想到一个问题,多核处理器会不会导致,单一线程中,由runloop分发的2个函数同时执行呢?进而同时修改同一个变量,产生bug? 我做了以下的测试: - (void)viewDidL ...
- c#缓存 笔记
1:缓存. 你需要了解大数据高并发的瓶颈在哪里,一般都是数据库层面的,机械硬盘承载不起非常快速的读写操作,cpu承载不起大量的逻辑运算,所以最基本的解决思路就是:1.换固态硬盘加快硬盘的读写效率.2. ...
- js 一搬问题汇总
--有时无法进行js调试,在浏览器中设置启用脚本调试就可以了
- 项目管理工具~SVN
SVN 定期更新:每周五,周一早上 目录完备: 需求文档 设计文档 数据字典 测试报告 代码备份 周报月报 ...
- Enum:EXTENDED LIGHTS OUT(POJ 1222)
亮灯 题目大意:有一个5*6的灯组,按一盏灯会让其他上下左右4栈和他自己灯变为原来相反的状态,要怎么按才会把所有的灯都按灭? 3279翻版题目,不多说,另外这一题还可以用其他方法,比如DFS,BFS, ...