CF467C George and Job (DP)
Codeforces Round #267 (Div. 2)
|
C. George and Job
time limit per test
1 second memory limit per test
256 megabytes input
standard input output
standard output The new ITone 6 has been released recently and George got really keen to buy it. Unfortunately, he didn't have enough money, so George was going to work as a programmer. Now he faced the following problem at the work. Given a sequence of n integers p1, p2, ..., pn. You are to choose k pairs of integers: [l1, r1], [l2, r2], ..., [lk, rk] (1 ≤ l1 ≤ r1 < l2 ≤ r2 < ... < lk ≤ rk ≤ n; ri - li + 1 = m), in such a way that the value of sum Input
The first line contains three integers n, m and k (1 ≤ (m × k) ≤ n ≤ 5000). The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ 109). Output
Print an integer in a single line — the maximum possible value of sum. Sample test(s)
Input
5 2 1 Output
9 Input
7 1 3 Output
61 |
题意:
给出n,m,k,给出由n个数组成的序列,在其中选出k组不重叠的连续m个数,使选择的数的和最大。
题解:
DP。
f[i][j],表示在[1,i]中选了j个区间得到的最大的和。
由于要经常求某连续m个数的和,可以先预处理出所有连续m个数的和,sum[i]表示以i为结尾的连续m个数的和。
最后结果为f[n][k]。
状态转移:
mf1(f);///全部置为-1
FOR(i,,n) f[i][]=;
FOR(i,,n){
FOR(j,,k){
f[i][j]=f[i-][j];
if(i-m>= && f[i-m][j-] != -) f[i][j]=max(f[i][j],f[i-m][j-]+sum[i]);
}
}
全代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define mf1(array) memset(array, -1, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back
const double eps=1e-;
const double pi=acos(-1.0);
int a[];
ll sum[];
ll f[][];///f[i][j],到i时选了j个区间
int n,m,k;
int main(){
int i,j;
RD3(n,m,k);
FOR(i,,n){
RD(a[i]);
}
ll sm=;
FOR(i,,n){
sm+=a[i];
if(i>=m){
sum[i]=sm;
sm-=a[i-m+];
}
}
mf1(f);///全部置为-1
FOR(i,,n) f[i][]=;
FOR(i,,n){
FOR(j,,k){
f[i][j]=f[i-][j];
if(i-m>= && f[i-m][j-] != -) f[i][j]=max(f[i][j],f[i-m][j-]+sum[i]);
}
}
printf("%I64d\n",f[n][k]);
return ;
}
CF467C George and Job (DP)的更多相关文章
- Codeforces Round #267 (Div. 2) C. George and Job (dp)
wa哭了,,t哭了,,还是看了题解... 8170436 2014-10-11 06:41:51 njczy2010 C - George and Jo ...
- Codeforces 467C George and Job(DP)
题目 Source http://codeforces.com/contest/467/problem/C Description The new ITone 6 has been released ...
- Codeforces Round #267 (Div. 2) C. George and Job(DP)补题
Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...
- codeforces #267 C George and Job(DP)
职务地址:http://codeforces.com/contest/467/problem/C 太弱了..这题当时都没做出来..思路是有的,可是自己出的几组数组总是过不去..今天又又一次写了一遍.才 ...
- 【Codeforces】CF 467 C George and Job(dp)
题目 传送门:QWQ 分析 dp基础题. $ dp[i][j] $表示前i个数分成j组的最大和. 转移显然. 吐槽:做cf题全靠洛谷翻译苟活. 代码 #include <bits/stdc++. ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
随机推荐
- Leetcode 134 Gas Station
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- UOJ244 【UER #7】短路
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 洛谷P1595 信封问题
题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...
- centos虚拟机克隆
vmware vsphere平台上克隆centos6 一.删掉/etc/udev/rules.d/70-persistent-net.rules文件 reboot 二.vim ifcfg-eth0 删 ...
- Android开发环境搭建中的一些小问题记录
1.由于市场上大多数教程是基于Eclipse,而AndroidStudio显然是大势所趋,所有我在电脑上同时搭建了两个IDE,直接在官网下载AndroidStudio比较好,因为SDK,AVD都集成了 ...
- ubantu安装sogou输入法
Ubuntu的搜狗输入法安装步骤 1 本来想先移除ibus,但是在之后发现如果直接使用下面的命令 sudo apt-get remove ibus 移除ibus将导致系统某些地方不正常的问题,例如 ...
- linux 无线网络配置工具wpa_supplicant与wireless-tools
4.a. 介绍目前您可以使用我们提供的wireless-tools 或wpa_supplicant工具来配置无线网络.请记住重要的一点是,您对无线网络的配置是全局性的,而非针对具体的接口.wpa_su ...
- css编写规范
一.注释规范 1.文件顶部注释(推荐使用) /* * @description: 中文说明 * @author: name * @update: name (2013-04-13 18:32) */ ...
- Visual Studio 当前上下文中不存在名称“ConfigurationManager”
Visual Studio调试出现错误:当前上下文中不存在名称“ConfigurationManager” 解决方法: 1.System.Configuration引用这个dll参考:http://k ...
- JDBC编程的方式
JDBC编程的方式,我们以一个简单的查询为例,使用JDBC编程,如下: 从上面可以看出JDBC编程一般要如下步骤: 1. 加载数据库驱动 2. 创建并获取数据库连接 3. 创建jdbc stateme ...
is maximal possible. Help George to cope with the task.