素数的线性筛 && 欧拉函数
O(n) 筛选素数
#include<bits/stdc++.h>
using namespace std;
const int M = 1e6 + 10 ; int mindiv[M] ;//每个数的最小质因数
int prim[M] , pnum ;//存素数
bool vis[M] ; void prim () {
for (int i = 2 ; i < M ; i ++) {
if (!vis[i]) {
mindiv[i] = i ;
prim[ pnum++ ] = i ;
}
for (int j = 0 ; j < pnum ; j ++) {
if ( i*prim[j] >= M ) break ;
vis[ i*prim[j] ] = 1 ;
mindiv[i] = prim[j] ;
if (i % prim[j] == 0) break ;
}
}
} int main () {
prim () ;
return 0 ;
}
欧拉函数:phi[i] 为<= i 的范围内与i互质的数的数量
欧拉埃筛,写起来简单,复杂度O(log(log(N)))(zstu 幻神):
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int M = 1e6 + 10 ; int n, m, T; int euler[M]; void Euler () {
for(int i = 0; i < M ; i ++) euler[i] = i;
for(int i = 2; i < M ; i ++){
if(euler[i] == i) {
for (int j = i; j < M ; j += i) {
euler[j] = euler[j] - euler[j]/i;
}
}
}
} int main(){
Euler ();
int n ;
while (~ scanf ("%d" , &n)) printf ("%d\n" , euler[n]) ;
return 0;
}
欧拉线筛,写起来复杂点,(墨迹了我半天)复杂度O(N):
#include<bits/stdc++.h>
using namespace std;
const int M = 1e6 + 10 ;
int prim[M] , pnum ;
bool vis[M] ;
int phi[M] ; void Euler () {
for (int i = 2 ; i < M ; i ++) {
if (!vis[i]) {
prim[ pnum++ ] = i ;
phi[i] = i - 1;
}
for (int j = 0 ; j < pnum ; j ++) {
int x = i * prim[j] ;
if (x >= M ) break ;
vis[x] = 1 ;
if (i % prim[j] == 0) {
int y = i , cnt = 0 , z = prim[j] ;
while (y % prim[j] == 0) cnt ++ , y /= prim[j] , z *= prim[j] ;
if (y == 1) phi[x] = x - x/prim[j] ;
else phi[x] = phi[y] * phi[z] ;
break ;
}
else phi[x] = phi[i] * phi[ prim[j] ] ;
}
}
} int main () {
Euler () ;
int n ;
while (~ scanf ("%d" , &n)) printf ("%d\n" , phi[n]) ;
return 0 ;
}
线性欧拉跟新:
#include<cstdio>
#include<iostream>
using namespace std;
int prime[100005],phi[1000005];
int main(){
int i,j;
for(i=2;i<1000002;++i){
if(!phi[i]){
phi[i]=i-1;
prime[++prime[0]]=i;
}
for(j=1;j<=prime[0]&&(long long)i*prime[j]<1000002;++j)
if(i%prime[j])phi[i*prime[j]]=phi[i]*(prime[j]-1);
else{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
int T,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%d\n",phi[n+1]);
}
}
素数的线性筛 && 欧拉函数的更多相关文章
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- poj1248 (线性筛欧拉函数)(原根)
强烈鸣谢wddwjlss 题目大意:给出一个奇素数,求出他的原根的个数,多组数据. 这里先介绍一些基本性质 阶 设\((a,m)=1\),满足\(a^r \equiv 1 \pmod m\)的最小正整 ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- Farey Sequence (素筛欧拉函数/水)题解
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/ ...
随机推荐
- servlet中请求转发(forword)与重定向(sendredirect)的区别
摘自:http://www.cnblogs.com/CodeGuy/archive/2012/02/13/2349970.html 通俗易懂 servlet请求转发与重定向的区别: request.s ...
- 重写Object类中的equals方法
Object是所有类的父亲,这个类有很多方法,我们都可以直接调用,但有些方法并不适合,例如下面的student类 public class Student { //姓名.学号.年纪 private S ...
- Mysql学习笔记(七)mysql编程基础之自定义函数。
delimiter $$ create function fn_liangzifunction() returns int no sql begin ; return @row_no; end; $$ ...
- JS-window对象集合
知识点表格截图:
- Nginx个人简单理解
首先我们来补充下一些基本知识: 什么是代理服务器? 先举个简单的例子,现在我们在百度访问谷歌的网站,发现现在进不去,这个时候我们可以FQ(关于FQ,可以借鉴下这个博文:http://zhangge.n ...
- win7怎么显示隐藏文件夹
1. 点击“组织”,再选择“文件夹和搜索选项”命令. 2. 接下来在打开的“文件夹选项”对话框中,单击“查看”,切换到“查看”选项卡中. 3. 然后在下面的“高级设置”区域,取消“隐藏受保护的操作系统 ...
- 查看linux机器是32位还是64位的方法
file /sbin/init 或者 file /bin/ls/sbin/init: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dyna ...
- 4个mysql客户端工具的比较
mysql是我以前学习和练习所使用的数据,现在在工作中也在使用,之前公司里用oracle,我在做自己的东西的时候觉得用oracle太不方便,于是就找了mysql(当时也考虑过sqlserver,觉得还 ...
- htons
在Windows和Linux网络编程时需要用到的,用来将主机字节顺序转化为网络字节顺序,以Windows下的代码为例: 1 2 #include<winsock2.h> u_shortht ...
- pyinstaller 官方介绍
http://www.pyinstaller.org/ pyinstaller支持多个平台,windows,linux,mac,兼容多个第三方包,包括pyqt,django,matplotlib Py ...