【BZOJ-2721】樱花 线性筛 + 数学
2721: [Violet 5]樱花
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 499 Solved: 293
[Submit][Status][Discuss]
Description
.gif)
Input
.gif)
Output
.gif)
Sample Input
Sample Output
HINT
.gif)
Source
Solution
巧妙!
$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ 令$z=n!$
则可以得到$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}=>x=\frac{yz}{y-z}$
再另$t=y-z$则可以得到$x=z+\frac{z^{2}}{t}$
所以我们求$n!^{2}$的约数,就是答案,这就利用到线筛
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define P 1000000007
#define LL long long
int N,cnt,prime[],z[],tmp;
bool flag[];
LL ans=1LL;
void Getprime()
{
flag[]=; cnt=;
for (int i=; i<=N; i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=; j<=cnt && prime[j]*i<=N; j++)
{
flag[i*prime[j]]=;
if (prime[j]%i==) break;
}
}
}
void Calc(int x)
{
for (int i=prime[x]; i<=N; i+=prime[x])
for (int j=i; j%prime[x]==; j/=prime[x]) z[x]++;
}
int main()
{
scanf("%d",&N);
Getprime();
for (int i=; i<=cnt; i++) Calc(i);
for (int i=; i<=cnt; i++) printf("%d ",z[i]); puts("");
for (int i=; i<=cnt; i++) ans=((LL)ans*(z[i]<<|)%P)%P;
printf("%lld\n",ans);
return ;
}
【BZOJ-2721】樱花 线性筛 + 数学的更多相关文章
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- 【BZOJ2721】[Violet 5]樱花 线性筛素数
[BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约 ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- [BZOJ 2721] [Violet 5] 樱花 【线性筛】
题目链接:BZOJ - 2721 题目分析 题目大意:求出 1 / x + 1 / y = 1 / n! 的正整数解 (x, y) 的个数. 显然,要求出正整数解 (x, y) 的个数,只要求出使 y ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 2795 [Poi2012]A Horrible Poem hash+线性筛
题目大意 bzoj 2795 给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节. 如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到. n<=500 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
随机推荐
- Winform调用系统的剪切,复制,粘贴文件功能
// <summary> /// 复制或剪切文件至剪贴板(方法) /// </summary> /// <param name="files"> ...
- 20款最佳用户体验的Sublime Text 2/3主题下载及安装方法
20款最佳用户体验的Sublime Text 2/3主题下载及安装方法
- android中Camera setDisplayOrientation使用
在写相机相关应用的时候遇到捕获的画面方向和手机的方向不一致的问题,比如手机是竖着拿的,但是画面是横的,这是由于摄像头默认捕获的画面byte[]是根据横向来的,而你的应用是竖向的,解决办法是调用setD ...
- FastFourierTransform (FFT)
FastFourierTransform.h #pragma once #include <stdio.h> #include <math.h> #ifndef INCLUDE ...
- c++ 静态持续变量
c++为静态存储持续性变量提供了3种链接性: 外部链接性(可在其他文件中访问) 内部链接性(只能在当前文件中访问) 无链接性(别有用心能在当前函数或代码中访问) 如果没有显示的初始化静态变量会把它设置 ...
- Oracle 常用操作【02】数据库特性
1. 导出 oracle 注释 -- 表明細+表注释+字段明细+字段注释 a.一个用户下的表明細+表注释+字段明细+字段注释 select ATC.OWNER, atC.TABLE_NAME, utc ...
- IntelliJ IDEA,代码行宽度超出限制时自动换行
转自:http://my.oschina.net/angerbaby/blog/471351 当我们使用IDE写代码时,为了保证代码的可阅读性和优雅性,通常会借助IDE的代码风格设置功能,令IDE智能 ...
- How to create a batch of VMs with PowerShell
Foreword When we do some test that need several VMs, we can use PowerShell script or CmdLets to impl ...
- Matlab中数组元素引用——三种方法
Matlab中数组元素引用——三种方法 1.Matlab中数组元素引用有三种方法 1 2 3 1.下标法(subscripts) 2.索引法(index) 3.布尔法(Boolean) 注意:在使 ...
- JavaScript学习笔记- 正则表达式常用验证
<div> <h1>一.判断中国邮政编码匹配</h1> <p>分析:中国邮政编码都是6位,且为纯数字</p> <div>邮政编码 ...