均值是所有训练样本的均值,减去之后再进行训练会提高其速度和精度。

1、caffe下的均值

数据格式是二进制的binaryproto,作者提供了计算均值的文件compute_image_mean,

计算均值时调用:

sudo build/tools/compute_image_mean examples/mnist/mnist_train_lmdb examples/mnist/mean.binaryproto

生成的均值文件保存在mean_binaryproto。

2、python格式下的均值(.npy)

需要首先将其转为二进制的,然后再转成python格式下的,用一个python脚本来实现。

#!/usr/bin/env python
import numpy as np
import sys,caffe if len(sys.argv)!=:
print "Usage: python convert_mean.py mean.binaryproto mean.npy"
sys.exit() blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open( sys.argv[] , 'rb' ).read()//读入mean.binaryproto
blob.ParseFromString(bin_mean)//解析文件内容到blob
//将blob中的均值转化为.py格式,array的shape(mean_number,channel,height,width)
arr = np.array( caffe.io.blobproto_to_array(blob) )
//选择其中一组均值(?),保存
npy_mean = arr[]
np.save( sys.argv[] , npy_mean )

将其保存为convert_mean.py,调用

sudo python convert_mean.py mean.binaryproto mean.npy

得到python下的文件mean.npy

参考:http://www.cnblogs.com/denny402/p/5102328.html

http://blog.csdn.net/hyman_yx/article/details/51732656

3、caffe.proto

在2中,出现了caffe.proto,其中定了很多结构化的数据,比如conv层啊,pool层啊。Protobuf是用于数组存储和交换的,

比如一部分写数据进行存储,另一部分进行读写,为了方便操作,将其定义共同的结构化据。

具体可参考:http://blog.csdn.net/qq_16055159/article/details/45115359/

Caffe学习系列(12):不同格式下计算图片的均值和caffe.proto的更多相关文章

  1. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  2. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  3. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  4. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历)

    兜兜转转,兜兜转转; 一次有一次,这次终于把Faster R-CNN 跑通了. 重要提示1:在开始跑Faster R-CNN之前一定要搞清楚用的是Python2 还是Python3. 不然你会无限次陷 ...

  5. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  6. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  7. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

  8. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  9. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

随机推荐

  1. CentOS7安装Ambari

    环境: CentOS7安装两个节点:master.slave1.并配置ssh无密码登录. 步骤: 获取 Ambari 的公共库文件(public repository): wget http://pu ...

  2. JStorm集群的安装和使用

    0 JStorm概述 JStorm是一个分布式的实时计算引擎.从应用的角度,JStorm应用是一种遵守某种编程规范的分布式应用:从系统角度, JStorm是一套类似MapReduce的调度系统: 从数 ...

  3. zepto.js的事件处理

    能够深入理解zepto对事件的处理,那么整个JS的事件处理就应该差不多合格了,事件处理是JS语言的一个难点. 1. 首先来看$.event函数. JS中有很多事件,都是已经定义好了,我们直接调用就可以 ...

  4. OpenGL瓶颈

    在优化Erya3D引擎的过程中,遇到的瓶颈: 1. 字符串操作,避免逐个字符的比较,使用哈希码比较2. 贴图操作:切换绑定贴图.更改贴图参数3. 切换绑定GLSL程序4. Draw Call:http ...

  5. 处理ecshp图片上传失真

    默认生成jpg缩略图或商品图的质量是80,有些时候不够满意,现提供调整生成jpg图片的质量的方法找到includes/cls_image.php,在大约250行左右 /* 生成文件 */        ...

  6. OSX10.11 删除系统自带的软件

    之前一直用sudo rm - rf 系统的浏览器名字 正常删除safari 升级到10.11后,完全没作用了 需要关闭系统的什么安全模式 csrutil disable 再进入系统使用此命令可正常删除 ...

  7. php Hash Table(三) Hash Table初始化

    HashTable初始化,在使用HashTable之前要先执行初始化,下边就看看初始化时都做了什么, Zend/zend_hash.c static const Bucket *uninitializ ...

  8. [Unity] 常用技巧收集

    Unity 屏幕旋转 void Update () { //处理横向两个方向旋转 if(Input.deviceOrientation == DeviceOrientation.LandscapeLe ...

  9. Mongodb 资源

    一.资源 1.C# 驱动下载地址 https://github.com/mongodb/mongo-csharp-driver/releases 2. Mongodb 管理工具 mongochef 下 ...

  10. 几种 Java 序列化方案的性能比较

    较结果: create ser deser total size +dfl java-built-in 62 5608 29649 35257 889 514 hessian 65 3812 6708 ...