基于Spark1.3.0的Spark sql三个核心部分
基于Spark1.3.0的Spark sql三个核心部分:
1.可以架子啊各种结构化数据源(JSON,Hive,and Parquet)
2.可以让你通过SQL,saprk内部程序或者外部攻击,通过标准的数据库连接(JDBC/ODBC)连接spark,比如一个商业智能的工具Tableau
3.当你通过使用spark程序,spark sql提供丰富又智能的SQL或者regular Python/Java/Scala code,包括 join RDDS ,SQL tables ,使用SQL自定义用户函数
以下资料参考自:http://blog.csdn.net/stark_summer/article/details/45843803在Spark中提供了一个JdbcRDD类,该RDD就是读取JDBC中的数据并转换成RDD,之后我们就可以
对该RDD进行各种操作。我们先看看该类:
JdbcRDD[T:ClassTag](sc:SparkContext,getConnection:()=>Connection,
sql:String,lowerBound:Long,upperBound:Long,numPartitions:Int,
mapRow:(ResultSet)=> T=JdbcRDD.resultSetToObjectArray _)
1、getConnection 返回一个已经打开的结构化数据库连接,JdbcRDD会自动维护关闭。
2、sql:是查询语句,次查询已经必须包含两处占位符?来作为分割数据库ResultSet的参数,
例如:"select title,author from books where ?<=id and id<=?"
3.lowerBound,upperBound,numPartitions:分别为第一、第二占位符,partition的个数。例如:给出lowebound 1,upperbound 20 numpartitions 2,则查询分别为(1,10,)与(11,20)
4.mapRow是转换函数,将返回的ResultSet转换成RDD需要的单行数据,此处可以选择Array或其他,也可以是自定义的case class.默认的是讲ResultSet转换成一个Object数组。
基于Spark1.3.0的Spark sql三个核心部分的更多相关文章
- 初识Spark2.0之Spark SQL
内存计算平台spark在今年6月份的时候正式发布了spark2.0,相比上一版本的spark1.6版本,在内存优化,数据组织,流计算等方面都做出了较大的改变,同时更加注重基于DataFrame数据组织 ...
- 理解Spark SQL(三)—— Spark SQL程序举例
上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的.使用这个函数执行SQL语句前需要 ...
- spark2.3.0 配置spark sql 操作hive
spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然后在spark引擎中进行sql统计分析,从而,通过spark sql与hive结合实现数据分析将成为一种最佳实践.配置步骤 ...
- Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...
- Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...
- Spark-1.6.0中的Sort Based Shuffle源码解读
从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了 ...
- 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...
- Hive、Spark SQL、Impala比较
Hive.Spark SQL.Impala比较 Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...
- 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...
随机推荐
- three.js入门3
为什么要用three.js Three.js为我们封装了底层的WebGl接口,使我们在无需掌握繁冗的图形学知识的基础下可以轻松的创建三维场景.相比较使用底层的WebGL我们可以使用更少的代码,大大的降 ...
- ol新属性
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SqlServer 事务回滚(1)
SQL事务 一.事务概念 事务是一种机制.是一种操作序列,它包含了一组数据库操作命令,这组命令要么全部执行,要么全部不执行.因此事务是一个不可分割的工作逻辑单元.在数据库系统上执行并发操作 ...
- TFS安装与管理
整了几天TFS,把相关的一些配置与安装的要点简单记下,希望对大家有用.本篇主要是安装与配置上的内容,下一篇会介绍如何使用以及使用方面的相关心得体会. 本篇内容简要: 1. 安装部署 1.1. 流 ...
- [R语言]forecast.Arima中使用xreg报错
问题: 使用forecast.Arima对带xreg的arima模型进行预测,报xreg Error pre.m4x <- forecast.Arima(m4x, h = 20, xreg = ...
- Android AIDL 进行进程间通讯(IPC)
编写AIDL文件时,需要注意: 1.接口名和aidl文件名相同. 2.接口和方法前不用加访问权限修饰符 (public.private.protected等,也不能用final.static). 3. ...
- BZOJ 1179 Atm 题解
BZOJ 1179 Atm 题解 SPFA Algorithm Tarjan Algorithm Description Input 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来 ...
- CF 22B. Bargaining Table
水题.好久没有写过优化搜索题了. #include <cstdio> #include <cstring> #include <iostream> #include ...
- hadoop CLASSNAME命令使用注意点
Hadoop中可是使用hadoop CLASSNAME命令.这个CLASSNAME就是你写好的类名.hadoop CLASSNAME命令类似于java classname. 使用hadoop CLAS ...
- PHP的学习--cookie和session--来自copy_02
PHP的学习--cookie和session 最近读了一点<PHP核心技术与最佳实践>,看了cookie和session,有所收获,结合之前的认识参考了几篇博客,总结一下-- 1. P ...