BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理。
时间复杂度$O(n^3\log k)$。
#include<cstdio>
#define N 121
typedef long long ll;
int n,m,B,T,i,j,k,x,y,z,f[N][3],v[N];ll K,a[62][N][N],b[N][N],c[N][N],ans;
void mul(ll a[][N],ll b[][N],ll c[][N]){
for(int i=0;i<T;i++)for(int j=0;j<T;j++){
c[i][j]=0;
for(int k=0;k<T;k++)if(a[i][k]&&b[k][j]){
if(a[i][k]<0||b[k][j]<0){c[i][j]=-1;break;}
if(a[i][k]>K/b[k][j]){c[i][j]=-1;break;}
c[i][j]+=a[i][k]*b[k][j];
if(c[i][j]>K){c[i][j]=-1;break;}
}
}
}
bool check(){
ll t=0;
for(int i=0;i<T;i++)if(c[0][i]&&v[i]){
if(c[0][i]<0)return 0;
if(c[0][i]>K/v[i])return 0;
t+=c[0][i]*v[i];
if(t>K)return 0;
}
return t<K;
}
int main(){
scanf("%d%d%lld",&n,&m,&K);
for(T=i=1;i<=n;i++)for(j=0;j<3;j++)f[i][j]=T++;
a[0][0][0]++;
for(i=1;i<=n;i++){
for(j=0;j<2;j++)a[0][f[i][j]][f[i][j+1]]++;
a[0][0][f[i][0]]++;
}
while(m--)scanf("%d%d%d",&x,&y,&z),a[0][f[y][z-1]][f[x][0]]++,v[f[y][z-1]]++;
for(B=0;(1LL<<B)<=K*3;B++);
for(i=1;i<B;i++)mul(a[i-1],a[i-1],a[i]);
for(i=0;i<T;i++)b[i][i]=1;
for(i=B-1;~i;i--){
mul(b,a[i],c);
if(check())for(ans|=1LL<<i,j=0;j<T;j++)for(k=0;k<T;k++)b[j][k]=c[j][k];
}
ans++;
if(ans>K*3)ans=-1;
return printf("%lld",ans),0;
}
BZOJ4386 : [POI2015]Wycieczki的更多相关文章
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- bzoj 4386: [POI2015]Wycieczki
bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- [POI2015]Wycieczki
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入输出 ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- POI2015题解
POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...
随机推荐
- Xcode - 修改变量名、类名及字符串的替换操作
在做iOS开发代码优化的工作时,优化代码结构之前,我们应该先整理好工程的外貌,将文件和类的命名进行规范,在Xcode中为我们提供了方便而强大的名称修改功能. 第一步:修改类名 将鼠标点击放在类的名称上 ...
- (转)ORA-12519: TNS:no appropriate service handler found 的问题处理。
很多时候出现:ORA-12519: TNS:no appropriate service handler found 都是由于当前的连接数已经超出他能够处理的最大值了. 处理方法如下:摘自网上. se ...
- SVM NG课件1
SVM NG课件1 2014年9月28日 16:39 一个二维空间点的示例 已使用 Microsoft OneNote 2013 创建.
- MVC中Form表单的提交
概述 Web页面进行Form表单提交是数据提交的一种,在MVC中Form表单提交到服务器.服务端接受Form表单的方式有多种,如果一个Form有2个submit按钮,那后台如何判断是哪个按钮提交的数据 ...
- 【php全局变量和静态变量、静态方法的使用方法】
php全局变量使用关键字global声明,静态变量使用static声明,静态变量的使用可以使用 类名::变量名 示例代码: <?php //全局变量global 的用法和静态变量的使用 glob ...
- 使用Mybatis-Generator自动生成Dao、Model、Mapping相关文件(转)
Mybatis属于半自动ORM,在使用这个框架中,工作量最大的就是书写Mapping的映射文件,由于手动书写很容易出错,我们可以利用Mybatis-Generator来帮我们自动生成文件. 1.相关文 ...
- OCJP(1Z0-851) 模拟题分析(六)over
Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...
- PHP面向对象编程之深入理解方法重载与方法覆盖(多态)
这篇文章主要介绍了PHP面向对象编程之深入理解方法重载与方法覆盖(多态)的相关资料,需要的朋友可以参考下: 什么是多态? 多态(Polymorphism)按字面的意思就是"多种状态" ...
- android开子线程避免出现main错误
Runnable SonThread=new Runnable() { @Override public void run() { // TODO Auto-generated method stub ...
- 单例模式/singleton模式/创建型模式
Java实现要点: 私有构造方法 线程安全(并发的考虑) 延迟加载(效率的考虑,对于较大的类在使用时在加载) 公有方法访问单一实例 常见单例模式代码及问题 //无延迟加载,常驻内存(即使不使用) cl ...