#一.读取图像数据
import cv2 img=cv2.imread("d:/image0.JPG") #读取图片数据
print(img)
cv2.imshow('image',img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

print(img) #打印像素值通道

从这个结果可以出:现在每个像素都由一个三元素组表示,并且每个整型(integer)向量

分别表示一个B,G,R通道。其他色彩空间(如hsv)也以同样地方式来表示像素,只是取值范围和通道数目不同
(例如,hsv)
print(img.shape)#打印通道

读取图像处理

cv2.IMREAD_COLOR:彩色图像

cv2.IMREAD_GRAYSCALE:灰度图像

灰度图像处理

import  cv2 as cv
import numpy as np img1=cv.imread("d:/image0.JPG",cv.IMREAD_GRAYSCALE) #读取灰图片数据
print(img1)
print(img1.shape)
cv.imshow('image',img1) #显示窗口数据
cv.waitKey(0) #等待延迟
cv.destroyAllWindows()

结果可以和色彩图像对比

二,数据读取-视频

cv2.VideoCapture可以捕获摄像头,用数字来控制不同的设备,例如0,1。

如果是视频文件,直接指定好路径即可。

import  cv2 
vc=cv2.VideoCapture(0)  #打开摄像头
if vc.isOpened(): #判断摄像头状态
open ,frame=vc.read()
else:
open=False
while open:
ret,frame=vc.read() #frame帧率
if frame is None:
break
if ret==True:
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #灰色处理
cv2.imshow("result",gray)
    if cv2.waitKey(10)& 0xFF==27:
break vc.release()
cv2.destroyAllWindows()

读取摄像头并且设置为灰色模式

剪切图像

import cv2
img=cv2.imread("d:/image0.JPG")
flower=img[0:200,0:200] #剪切图像
cv2.imshow('image',flower) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留r通道

import cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,0]=0
cur_img[:,:,1]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留g通道

import cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,0]=0
cur_img[:,:,2]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留b通道

import  cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,1]=0
cur_img[:,:,2]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

边界填充

BORDER_REPLICATE:复制法,也就是复制最边缘像素。

BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb

BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba

BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg

BORDER_CONSTANT:常量法,常数值填充。

import cv2
import matplotlib.pyplot as plt
img=cv2.imread("d:/cat.JPG")
top_size,bottom_size,left_size,right_size = (50,50,50,50) replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_CONSTANT, value=0)
plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT') plt.show()

数值计算

import cv2
img=cv2.imread("d:/image0.JPG")
img_flower=img+10 #所有通道数值+10
print(img[:5,:,0])
print(".........................")
print(img_flower[:5,:,0])

 

当数值超过256时会以%256地形式展示通道数据

print(".........................")
print((img_flower+img)[:5,:,0])

 

 

opencv-python图像处理基础(一)的更多相关文章

  1. 【图像处理】OpenCV+Python图像处理入门教程(四)几何变换

    这篇随笔介绍使用OpenCV进行图像处理的第四章 几何变换. 4  几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 4.1  缩放 使用cv2. ...

  2. 【图像处理】OpenCV+Python图像处理入门教程(五)阈值处理

    这篇随笔介绍使用OpenCV进行图像处理的第五章 阈值处理. 5  阈值处理 阈值是指像素到达某临界值.阈值处理表示像素到达某临界值后,对该像素点进行操作和处理. 例如:设定一幅图像素阈值为200,则 ...

  3. 【图像处理】OpenCV+Python图像处理入门教程(六)图像平滑处理

    相信很多小伙伴都听过"滤波器"这个词,在通信领域,滤波器能够去除噪声信号等频率成分,然而在我们OpenCV中,"滤波"并不是对频率进行筛选去除,而是实现了图像的 ...

  4. 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作

    图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...

  5. Opencv python图像处理-图像相似度计算

    一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...

  6. python 图像处理基础操作

    Python 读取图片文件为矩阵和保存矩阵为图片 读取图片为矩阵 import matplotlib im = matplotlib.image.imread('0_0.jpg') 保存矩阵为图片 i ...

  7. Python图像处理丨OpenCV+Numpy库读取与修改像素

    摘要:本篇文章主要讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素. 本文分享自华为云社区<[Python图像处理] 二.OpenCV+Numpy库读取与修改像素> ...

  8. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  10. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. Mongdb可视化工具Studio 3T的使用

    一.官网地址 https://studio3t.com/ 二.下载和安装 点击DOWNLOAD即可下载 按照自己电脑系统进行选择,然后填写邮箱和选择行业,第一次登录如果不提交不会下载,下载完成是一个z ...

  2. 如果获取ruby的hash的v值?

    最近写ruby,用到hash,通过k去获取v值,有时候通过hash["k"]去获取可以获取到,有时候通过又获取不到,感觉一脸懵逼 仔细观察了下ruby的hash,有两种表现形式,所 ...

  3. 精通awk系列(7):awk读取行的细节

    回到: Linux系列文章 Shell系列文章 Awk系列文章 详细分析awk如何读取文件 awk读取输入文件时,每次读取一条记录(record)(默认情况下按行读取,所以此时记录就是行).每读取一条 ...

  4. C# 中的基本数值类型

    在之前的文章中(地址:https://www.vinanysoft.com/c-sharp-basics/introducing/),以 HelloWorld 程序为基础,介绍 C# 语言.它的结构. ...

  5. elasticSearch的部署和使用

    部署服务 docker run启动elastic服务 docker pull elasticsearch:6.7.2 docker run -d -p 9200:9200 -p 9300:9300 - ...

  6. pyecharts画图总结

    pyecharts 画图归纳 将本地文件导入到Pyecharts: test = open(filename, 'r') data = test.readlines() test.close() 如果 ...

  7. Python 标准类库-数字和数学模块之decimal使用简介

    标准类库-数字和数学模块之decimal使用简介 by:授客 QQ:1033553122 例子 >>>from decimal import * >>>getcon ...

  8. JS---DOM---点击操作---节点的方式---案例

    点击操作---节点的方式---案例 案例1:点击按钮,设置p变色---节点的方式做 <!DOCTYPE html> <html lang="en"> < ...

  9. Angular--AOT和JIT两种编译方式带来的改变

    Angular 应用主要由组件及其 HTML 模板组成.由于浏览器无法直接理解 Angular 所提供的组件和模板,因此 Angular 应用程序需要先进行编译才能在浏览器中运行.Angular 提供 ...

  10. Go交叉编译(Go语言Mac/Linux/Windows下交叉编译)

    Go交叉编译(Go语言Mac/Linux/Windows下交叉编译) 2019/11/21 Chenxin 在很多时候,由于开发的方便,会有这样的场景出现,使用Mac开发或使用Windows开发,需要 ...