#一.读取图像数据
import cv2 img=cv2.imread("d:/image0.JPG") #读取图片数据
print(img)
cv2.imshow('image',img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

print(img) #打印像素值通道

从这个结果可以出:现在每个像素都由一个三元素组表示,并且每个整型(integer)向量

分别表示一个B,G,R通道。其他色彩空间(如hsv)也以同样地方式来表示像素,只是取值范围和通道数目不同
(例如,hsv)
print(img.shape)#打印通道

读取图像处理

cv2.IMREAD_COLOR:彩色图像

cv2.IMREAD_GRAYSCALE:灰度图像

灰度图像处理

import  cv2 as cv
import numpy as np img1=cv.imread("d:/image0.JPG",cv.IMREAD_GRAYSCALE) #读取灰图片数据
print(img1)
print(img1.shape)
cv.imshow('image',img1) #显示窗口数据
cv.waitKey(0) #等待延迟
cv.destroyAllWindows()

结果可以和色彩图像对比

二,数据读取-视频

cv2.VideoCapture可以捕获摄像头,用数字来控制不同的设备,例如0,1。

如果是视频文件,直接指定好路径即可。

import  cv2 
vc=cv2.VideoCapture(0)  #打开摄像头
if vc.isOpened(): #判断摄像头状态
open ,frame=vc.read()
else:
open=False
while open:
ret,frame=vc.read() #frame帧率
if frame is None:
break
if ret==True:
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #灰色处理
cv2.imshow("result",gray)
    if cv2.waitKey(10)& 0xFF==27:
break vc.release()
cv2.destroyAllWindows()

读取摄像头并且设置为灰色模式

剪切图像

import cv2
img=cv2.imread("d:/image0.JPG")
flower=img[0:200,0:200] #剪切图像
cv2.imshow('image',flower) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留r通道

import cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,0]=0
cur_img[:,:,1]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留g通道

import cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,0]=0
cur_img[:,:,2]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

颜色通道地提取只保留b通道

import  cv2
img=cv2.imread("d:/image0.JPG")
b,g,r=cv2.split(img)
print(b)
#只保留b结果
cur_img=img.copy()
cur_img[:,:,1]=0
cur_img[:,:,2]=0
cv2.imshow('image',cur_img) #显示窗口数据
cv2.waitKey(0) #等待延迟
cv2.destroyAllWindows()

边界填充

BORDER_REPLICATE:复制法,也就是复制最边缘像素。

BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb

BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba

BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg

BORDER_CONSTANT:常量法,常数值填充。

import cv2
import matplotlib.pyplot as plt
img=cv2.imread("d:/cat.JPG")
top_size,bottom_size,left_size,right_size = (50,50,50,50) replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size,cv2.BORDER_CONSTANT, value=0)
plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT') plt.show()

数值计算

import cv2
img=cv2.imread("d:/image0.JPG")
img_flower=img+10 #所有通道数值+10
print(img[:5,:,0])
print(".........................")
print(img_flower[:5,:,0])

 

当数值超过256时会以%256地形式展示通道数据

print(".........................")
print((img_flower+img)[:5,:,0])

 

 

opencv-python图像处理基础(一)的更多相关文章

  1. 【图像处理】OpenCV+Python图像处理入门教程(四)几何变换

    这篇随笔介绍使用OpenCV进行图像处理的第四章 几何变换. 4  几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 4.1  缩放 使用cv2. ...

  2. 【图像处理】OpenCV+Python图像处理入门教程(五)阈值处理

    这篇随笔介绍使用OpenCV进行图像处理的第五章 阈值处理. 5  阈值处理 阈值是指像素到达某临界值.阈值处理表示像素到达某临界值后,对该像素点进行操作和处理. 例如:设定一幅图像素阈值为200,则 ...

  3. 【图像处理】OpenCV+Python图像处理入门教程(六)图像平滑处理

    相信很多小伙伴都听过"滤波器"这个词,在通信领域,滤波器能够去除噪声信号等频率成分,然而在我们OpenCV中,"滤波"并不是对频率进行筛选去除,而是实现了图像的 ...

  4. 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作

    图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...

  5. Opencv python图像处理-图像相似度计算

    一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...

  6. python 图像处理基础操作

    Python 读取图片文件为矩阵和保存矩阵为图片 读取图片为矩阵 import matplotlib im = matplotlib.image.imread('0_0.jpg') 保存矩阵为图片 i ...

  7. Python图像处理丨OpenCV+Numpy库读取与修改像素

    摘要:本篇文章主要讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素. 本文分享自华为云社区<[Python图像处理] 二.OpenCV+Numpy库读取与修改像素> ...

  8. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  10. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. HTML连载57-相对定位和绝对定位

    一.定位流 1.分类 (1)相对定位: (2)绝对定位 (3)固定定位 (4)静态定位 2.什么相对定位 相对定位就是相对于自己以前在标准流中的位置来移动. 例子: <style> div ...

  2. 【zabbix监控问题】记录zabbix控制面板报错及日志报错的解决方法

    问题1: 上图是我已经解决了的截图.在百度查询的资料中,说是把zabbix_agentd.conf文件中server监听的主机127.0.0.1去掉,但是我去掉之后问题仍然没有解决,最后在这篇博客上发 ...

  3. 从零开始手写 dubbo rpc 框架

    rpc rpc 是基于 netty 实现的 java rpc 框架,类似于 dubbo. 主要用于个人学习,由渐入深,理解 rpc 的底层实现原理. 前言 工作至今,接触 rpc 框架已经有很长时间. ...

  4. Spring Boot2解决idea console 控制台输出乱码

    Idea默认配置是采用GBK, 而项目工程文件采用的是UTF-8. 编码不一致,导致idea Console控制台输出乱码. 网上的解决方案,大都是直接修改Settings=>Editor=&g ...

  5. 一起学SpringMVC之Request方式

    本文主要以一些简单的小例子,简述在SpringMVC开发过程中,经常用到的Request方面的内容,仅供学习分享使用,如有不足之处,还请指正. 概述 在客户机和服务器之间进行请求-响应时,两种最常被用 ...

  6. Dynamics 365需要的最小的权限用来更改用户的业务部门和角色

    我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  7. oracle 架构图

  8. C# Distinct去重泛型List

    List<int>去重 List<string>去重 List<T>去重 1. List<int>去重 List<int> ilist = ...

  9. Java_枚举Enum基本使用

    特性 在某些情况下,一个类的对象时有限且固定的,如季节类,它只有春夏秋冬4个对象这种实例有限且固定的类,在 Java 中被称为枚举类: 在 Java 中使用 enum 关键字来定义枚举类,其地位与 c ...

  10. 使用Eclipse开发Web项目(JSP)——简单登录、无sql

    1.使用Eclipse开发Web项目(JSP) tomcat 2.在Eclipse中创建的Web项目: 浏览器可以直接访问webContent中的文件 例如http://localhost:8080/ ...