ExecuteLimitFilter

ExecuteLimitFilter ,在服务提供者,通过 <dubbo:service /> 的 "executes" 统一配置项开启:

表示每服务的每方法最大可并行执行请求数。

ExecuteLimitFilter是通过信号量来实现的对服务端的并发数的控制。

ExecuteLimitFilter执行流程:

  1. 首先会去获得服务提供者每服务每方法最大可并行执行请求数
  2. 如果每服务每方法最大可并行执行请求数大于零,那么就基于基于服务 URL + 方法维度获取一个RpcStatus实例
  3. 通过RpcStatus实例获取一个信号量,若果获取的这个信号量调用tryAcquire返回false,则抛出异常
  4. 如果没有抛异常,那么久调用RpcStatus静态方法beginCount,给这个 URL + 方法维度开始计数
  5. 调用服务
  6. 调用结束后计数调用RpcStatus静态方法endCount,计数结束
  7. 释放信号量

ExecuteLimitFilter

    @Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
URL url = invoker.getUrl();
String methodName = invocation.getMethodName();
Semaphore executesLimit = null;
boolean acquireResult = false;
int max = url.getMethodParameter(methodName, Constants.EXECUTES_KEY, 0);
if (max > 0) {
RpcStatus count = RpcStatus.getStatus(url, invocation.getMethodName());
// if (count.getActive() >= max) {
/**
* http://manzhizhen.iteye.com/blog/2386408
* use semaphore for concurrency control (to limit thread number)
*/
executesLimit = count.getSemaphore(max);
if(executesLimit != null && !(acquireResult = executesLimit.tryAcquire())) {
throw new RpcException("Failed to invoke method " + invocation.getMethodName() + " in provider " + url + ", cause: The service using threads greater than <dubbo:service executes=\"" + max + "\" /> limited.");
}
}
long begin = System.currentTimeMillis();
boolean isSuccess = true;
RpcStatus.beginCount(url, methodName);
try {
Result result = invoker.invoke(invocation);
return result;
} catch (Throwable t) {
isSuccess = false;
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new RpcException("unexpected exception when ExecuteLimitFilter", t);
}
} finally {
RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, isSuccess);
if(acquireResult) {
executesLimit.release();
}
}
}

我们接下来看看RpcStatus这个类

    private static final ConcurrentMap<String, ConcurrentMap<String, RpcStatus>> METHOD_STATISTICS = new ConcurrentHashMap<String, ConcurrentMap<String, RpcStatus>>();

    public static RpcStatus getStatus(URL url, String methodName) {
String uri = url.toIdentityString();
ConcurrentMap<String, RpcStatus> map = METHOD_STATISTICS.get(uri);
if (map == null) {
METHOD_STATISTICS.putIfAbsent(uri, new ConcurrentHashMap<String, RpcStatus>());
map = METHOD_STATISTICS.get(uri);
}
RpcStatus status = map.get(methodName);
if (status == null) {
map.putIfAbsent(methodName, new RpcStatus());
status = map.get(methodName);
}
return status;
}

这个方法很简单,大概就是给RpcStatus这个类里面的静态属性METHOD_STATISTICS里面设值。外层的map是以url为key,里层的map是以方法名为key。

    private volatile int executesPermits;
public Semaphore getSemaphore(int maxThreadNum) {
if(maxThreadNum <= 0) {
return null;
} if (executesLimit == null || executesPermits != maxThreadNum) {
synchronized (this) {
if (executesLimit == null || executesPermits != maxThreadNum) {
executesLimit = new Semaphore(maxThreadNum);
executesPermits = maxThreadNum;
}
}
} return executesLimit;
}

这个方法是获取信号量,如果这个实例里面的信号量是空的,那么就添加一个,如果不是空的就返回。

TPSLimiter

TpsLimitFilter 过滤器,用于服务提供者中,提供限流的功能。

配置方式:

  1. 通过 <dubbo:parameter key="tps" value="" /> 配置项,添加到 <dubbo:service /> 或 <dubbo:provider /> 或 <dubbo:protocol /> 中开启,例如:
dubbo:service interface="com.alibaba.dubbo.demo.DemoService" ref="demoServiceImpl" protocol="injvm" >
<dubbo:parameter key="tps" value="100" />
</dubbo:service>
  1. 通过 <dubbo:parameter key="tps.interval" value="" /> 配置项,设置 TPS 周期。

源码分析

TpsLimitFilter

    private final TPSLimiter tpsLimiter = new DefaultTPSLimiter();

    @Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException { if (!tpsLimiter.isAllowable(invoker.getUrl(), invocation)) {
throw new RpcException(
"Failed to invoke service " +
invoker.getInterface().getName() +
"." +
invocation.getMethodName() +
" because exceed max service tps.");
} return invoker.invoke(invocation);
}

invoke方法调用了DefaultTPSLimiter的isAllowable,我们进入到isAllowable方法看一下

DefaultTPSLimiter

    private final ConcurrentMap<String, StatItem> stats
= new ConcurrentHashMap<String, StatItem>();
@Override
public boolean isAllowable(URL url, Invocation invocation) {
//获取tps这个参数设置的大小
int rate = url.getParameter(Constants.TPS_LIMIT_RATE_KEY, -1);
//获取tps.interval这个参数设置的大小,默认60秒
long interval = url.getParameter(Constants.TPS_LIMIT_INTERVAL_KEY,
Constants.DEFAULT_TPS_LIMIT_INTERVAL);
String serviceKey = url.getServiceKey();
if (rate > 0) {
StatItem statItem = stats.get(serviceKey);
if (statItem == null) {
stats.putIfAbsent(serviceKey,
new StatItem(serviceKey, rate, interval));
statItem = stats.get(serviceKey);
}
return statItem.isAllowable();
} else {
StatItem statItem = stats.get(serviceKey);
if (statItem != null) {
stats.remove(serviceKey);
}
} return true;
}

若要限流,调用 StatItem#isAllowable(url, invocation) 方法,根据 TPS 限流规则判断是否限制此次调用。

StatItem

    private long lastResetTime;

    private long interval;

    private AtomicInteger token;

    private int rate;

    public boolean isAllowable() {
long now = System.currentTimeMillis();
// 若到达下一个周期,恢复可用种子数,设置最后重置时间。
if (now > lastResetTime + interval) {
token.set(rate);// 回复可用种子数
lastResetTime = now;// 最后重置时间
}
// CAS ,直到或得到一个种子,或者没有足够种子
int value = token.get();
boolean flag = false;
while (value > 0 && !flag) {
flag = token.compareAndSet(value, value - 1);
value = token.get();
} return flag;
}

dubbo是如何控制并发数和限流的?的更多相关文章

  1. WCF之并发,吞吐量和限流

    并发 Single重入模式.对于每一个服务实例,同一时刻只能处理一个请求,其他对该实例的请求被排队. PerCall,每一线程会分配一个新的服务实例上.不会有并发性问题.不影响吞吐量. PerSess ...

  2. spring控制并发数的工具类ConcurrencyThrottleSupport和ConcurrencyThrottleInterceptor

    官方文档: /** * Support class for throttling concurrent access to a specific resource. * * <p>Desi ...

  3. Sentinel整合Dubbo限流实战(分布式限流)

    之前我们了解了 Sentinel 集成 SpringBoot实现限流,也探讨了Sentinel的限流基本原理,那么接下去我们来学习一下Sentinel整合Dubbo及 Nacos 实现动态数据源的限流 ...

  4. 微服务架构 | 5.2 基于 Sentinel 的服务限流及熔断

    目录 前言 1. Sentinel 基础知识 1.1 Sentinel 的特性 1.2 Sentinel 的组成 1.3 Sentinel 控制台上的 9 个功能 1.4 Sentinel 工作原理 ...

  5. 阿里巴巴开源限流组件Sentinel初探

    1 Sentinel主页 https://github.com/alibaba/Sentinel/wiki/主页 1.1 Sentinel介绍 随着微服务的流行,服务和服务之间的稳定性变得越来越重要. ...

  6. 高可用服务设计之二:Rate limiting 限流与降级

    <高可用服务设计之二:Rate limiting 限流与降级> <nginx限制请求之一:(ngx_http_limit_conn_module)模块> <nginx限制 ...

  7. 基于Redis的限流系统的设计

    本文讲述基于Redis的限流系统的设计,主要会谈及限流系统中限流策略这个功能的设计:在实现方面,算法使用的是令牌桶算法来,访问Redis使用lua脚本.   1.概念 In computer netw ...

  8. Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵动态限流规则

    Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵动态限流规则 前面几篇文章较为详细的介绍了Sentinel的使用姿势,还没看过的小伙伴可以访问以下链接查看: &l ...

  9. SpringCloudGateWay之限流

    一.引言在高并发系统中,经常需要限制系统中的电流化妆.一方面是防止大量的请求使服务器过载,导致服务不可用,另一方面是防止网络攻击.常用的限流方法,如hystrix.应用线程池隔离.超过线程池的负载和g ...

随机推荐

  1. c#基础四

    写入一个XML文件 using System; using System.Collections.Generic; using System.Linq; using System.Text; usin ...

  2. 微服务-springboot多环境配置(开发生产测试环境切换)

    springboot根据spring.profiles.active会去寻找应该加载开发环境配置还是生产环境配置 application.properties #生产环境,开发环境,测试环境切换 pr ...

  3. 无法启动iis express web服务器解决

    VS2013 .VS2015 .VS2017调试出现无法启动iis express web服务器 最近自己老是遇到这个问题,天天如此,烦死人,网上答案繁多,但是都解决不了,也是由于各种环境不同导致的, ...

  4. C# “从元数据”

    所谓元数据.其实是指由微软所封装的类..这些类你可以查看.但是无法修改. 元数据是一种二进制信息,用以对存储在公共语言运行库可移植可执行文件 (PE) 文件或存储在内存中的程序进行描述.将您的代码编译 ...

  5. kuangbin专题 专题一 简单搜索 Shuffle'm Up POJ - 3087

    题意:(1)有两副颜色多样的扑克牌,(A~H)表示不同颜色,给你两副牌,S1,S2和一副你需要洗出的KEY,S12由S2最底部,S1底部...一直下去,直到洗成S12,就是图片展示的那样.(2)洗好的 ...

  6. Flask-登录练习

    基于蓝图CBV模式的登录 使用蓝图并用cbv模式完成登录功能 登录成功后跳转到首页 将session保存在liunx上的redis数据库 使用before_request验证是否是登陆用户 蓝图 fr ...

  7. linux系统的基础优化

    目录 前言 网络优化 在虚拟软件中配置虚拟局域网 接着可以配置自己windows主机的网络连接配置 在虚拟软件中虚拟机添加网卡 虚拟机中的系统基础优化 前言 在自己做linux的相关服务实验时,是没有 ...

  8. Jenkins使用总结,2.0 新时代:从 CI 到 CD

    Jenkins近阶段使用的总结篇,只写了个引子,却一直未动手写完,今天补上. 前几篇文章提到在内网jenkins直接构建部署升级线上环境,job都是暴露在外面,很容易被误操作,需要做简单的权限控制,以 ...

  9. 【题解】导游-C++

    Description 宁波市的中小学生们在镇海中学参加程序设计比赛之余,热情的主办方邀请同学们参观镇海中学内的各处景点,已 知镇海中学内共有n处景点.现在有n位该校的学生志愿承担导游和讲解任务.每个 ...

  10. 启动Chrome时自动开启开发者模式

    右键点击Google Chrome浏览器图标→属性,在目标里面加上参数--auto-open-devtools-for-tabs即可