一个很久之前写的Spark作业,当时运行在local模式下。最近又开始处理这方面数据了,就打包提交集群,结果频频空指针。最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法。

这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错。错误如下:

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, node, executor 1): java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.take(RDD.scala:1326)
at org.apache.spark.ml.tree.impl.DecisionTreeMetadata$.buildMetadata(DecisionTreeMetadata.scala:112)
at org.apache.spark.ml.tree.impl.RandomForest$.run(RandomForest.scala:105)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:94)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:129)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:171)
at com.daxin.stat.har.OffLineTrainModel$.delayedEndpoint$com$daxin$stat$har$OffLineTrainModel$1(OffLineTrainModel.scala:145)
at com.daxin.stat.har.OffLineTrainModel$delayedInit$body.apply(OffLineTrainModel.scala:17)
at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
at scala.App$class.main(App.scala:76)
at com.daxin.stat.har.OffLineTrainModel$.main(OffLineTrainModel.scala:17)
at com.daxin.stat.har.OffLineTrainModel.main(OffLineTrainModel.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)

Spark本地运行成功,集群运行空指针异。的更多相关文章

  1. hadoop本地运行与集群运行

    开发环境: windows10+伪分布式(虚拟机组成的集群)+IDEA(不需要装插件) 介绍: 本地开发,本地debug,不需要启动集群,不需要在集群启动hdfs yarn 需要准备什么: 1/配置w ...

  2. storm单机运行与集群运行问题

    使用trident接口时,storm读取kafka数据会将kafka消费记录保存起来,将消费记录的位置保存在tridentTopology.newStream()的第一个参数里, 如果设置成从头开始消 ...

  3. 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]

    编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...

  4. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

  5. Spark学习之在集群上运行Spark

    一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...

  6. 在local模式下的spark程序打包到集群上运行

    一.前期准备 前期的环境准备,在Linux系统下要有Hadoop系统,spark伪分布式或者分布式,具体的教程可以查阅我的这两篇博客: Hadoop2.0伪分布式平台环境搭建 Spark2.4.0伪分 ...

  7. 【Spark】SparkStreaming-提交到集群运行

    SparkStreaming-提交到集群运行 spark streaming 提交_百度搜索 SparkStreaming示例在集群中运行 - CSDN博客

  8. Spark wordcount开发并提交到集群运行

    使用的ide是eclipse package com.luogankun.spark.base import org.apache.spark.SparkConf import org.apache. ...

  9. Spark学习之在集群上运行Spark(6)

    Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力. 2. Spark既能适用于专用集群,也可以适用于共享的云计算 ...

随机推荐

  1. loadrunner:Action.c(4): Error -27796: Failed to connect to server "192.168.66.3:8080": [10060] Connection timed out

    Action.c(4): Error -27796: Failed to connect to server "192.168.66.3:8080": [10060] Connec ...

  2. [转]Angular4 自制分页控件

    本文转自:https://blog.csdn.net/Junyuan_123/article/details/79486276 过年后第一波,自制的分页控件,可能功能没有 PrimeNG 那么好,但是 ...

  3. RPA流程自动化-Blueprism认证考试介绍

    RPA流程自动化-Blueprism认证考试介绍 接触RPA有一段时间了,几种RPA相关工具也都试用过,BluePrism是RPA工具的一种,今天跟大家分享考Blueprism的一些经验. RPA(R ...

  4. Extjs 项目中常用的小技巧,也许你用得着(1)

    我在项目中遇到的一些知识点: 1.在GridPanel中显示图片,效果 对应的代码实现 { text: '是否启用', width: 80, // xtype: 'checkcolumn', data ...

  5. break与continue,return结束循环区别

    break是跳出一层循环,continue是结束一趟循环 ,return才是结束所有层循环! 如果有多层for循环,break会跳出当前这一层,去执行最外层循环(而不是退出所有层循环);而contin ...

  6. SQL不重复查找数据及把一列多行内容拼成一行

    如下表: 表名:Test ID RowID Col1 Col2 1 1 A A 2 1 B A 3 1 A B 4 1 C B 1,查找表中字段重复的只查找一次 select distinct Col ...

  7. linux下使用gcc编译运行C/C++程序

    编译C  首先,程序编译过程有: 1.预处理(展开宏,头文件,检查代码是否有误) 2.编译(将.c转为汇编代码.s) 3.汇编(将汇编代码.s转为机器代码.o) 4.链接(将所有机器代码.o和库文件链 ...

  8. Java基础——Oracle(四)

    一.Sql * plus 常用命令 1.关于登录,连接的几个命令 1) conn[nect] //例  conn system/manager 用法 conn 用户名/密码 @网络服务名 (as sy ...

  9. Spring容器的创建刷新过程

    Spring容器的创建刷新过程 以AnnotionConfigApplicationContext为例,在new一个AnnotionConfigApplicationContext的时候,其构造函数内 ...

  10. Python 正则介绍

    正则表达式是一种小型的,高度专业化的变成语言,在 Python 中,它通过 re 模块实现.正则表达式模式被编译成一系列的字节码,然后由用 C 编写的引擎执行. findall() 方法,所有匹配的结 ...