Spark本地运行成功,集群运行空指针异。
一个很久之前写的Spark作业,当时运行在local模式下。最近又开始处理这方面数据了,就打包提交集群,结果频频空指针。最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法。
这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错。错误如下:
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, node, executor 1): java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.take(RDD.scala:1326)
at org.apache.spark.ml.tree.impl.DecisionTreeMetadata$.buildMetadata(DecisionTreeMetadata.scala:112)
at org.apache.spark.ml.tree.impl.RandomForest$.run(RandomForest.scala:105)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:94)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:129)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:171)
at com.daxin.stat.har.OffLineTrainModel$.delayedEndpoint$com$daxin$stat$har$OffLineTrainModel$1(OffLineTrainModel.scala:145)
at com.daxin.stat.har.OffLineTrainModel$delayedInit$body.apply(OffLineTrainModel.scala:17)
at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
at scala.App$class.main(App.scala:76)
at com.daxin.stat.har.OffLineTrainModel$.main(OffLineTrainModel.scala:17)
at com.daxin.stat.har.OffLineTrainModel.main(OffLineTrainModel.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
Spark本地运行成功,集群运行空指针异。的更多相关文章
- hadoop本地运行与集群运行
开发环境: windows10+伪分布式(虚拟机组成的集群)+IDEA(不需要装插件) 介绍: 本地开发,本地debug,不需要启动集群,不需要在集群启动hdfs yarn 需要准备什么: 1/配置w ...
- storm单机运行与集群运行问题
使用trident接口时,storm读取kafka数据会将kafka消费记录保存起来,将消费记录的位置保存在tridentTopology.newStream()的第一个参数里, 如果设置成从头开始消 ...
- 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]
编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
- Spark学习之在集群上运行Spark
一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...
- 在local模式下的spark程序打包到集群上运行
一.前期准备 前期的环境准备,在Linux系统下要有Hadoop系统,spark伪分布式或者分布式,具体的教程可以查阅我的这两篇博客: Hadoop2.0伪分布式平台环境搭建 Spark2.4.0伪分 ...
- 【Spark】SparkStreaming-提交到集群运行
SparkStreaming-提交到集群运行 spark streaming 提交_百度搜索 SparkStreaming示例在集群中运行 - CSDN博客
- Spark wordcount开发并提交到集群运行
使用的ide是eclipse package com.luogankun.spark.base import org.apache.spark.SparkConf import org.apache. ...
- Spark学习之在集群上运行Spark(6)
Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力. 2. Spark既能适用于专用集群,也可以适用于共享的云计算 ...
随机推荐
- 如何参与linux内核开发
如何参与linux 内核开发 如果想评论或更新本文的内容,请直接联系原文档的维护者.如果你使用英文 交流有困难的话,也可以向中文版维护者求助.如果本翻译更新不及时或者翻 译存在问题,请联系中文版维 ...
- python集合操作和内置方法
一 集合基本介绍 集合:在{}内用逗号隔开每个值,集合的特点: 每个值必须是不可变类型 集合是无序的 集合的值不能重复 集合的应用场景较少,最重要的应用场景为进行关系运算以及去重. 二 集合的操作 1 ...
- [转]Angular 4 *ngIf/Else
本文转自:http://tylerscode.com/2017/03/angular-4-ngifelse/ As you may know it wasn’t that many months ag ...
- win10 关闭自动更新
方法一 : 利用组策略关闭win10自动更新的步骤如下:1.按win+R打开“运行”,输入“gpedit.msc”,按下回车. 2.找到“计算机配置”→““管理模板”→“Windows 组件”→“Wi ...
- Git 实战手册(一): 批量修改log中的提交信息
本文须知 教程所示图片使用的是 github 仓库图片,网速过慢的朋友请移步原文地址 有空就来看看个人技术小站, 我一直都在 背景介绍 事情的起源是这样的:迷恋的谷歌的我最近申请了一个新的 googl ...
- 解决Linux服务器tomact-8.0启动慢的问题
环境信息: CentOS release 6.8 tomcat-8.0 JDK1.8 一.启动tomcat #sh /root/tomcat-8.0/bin/startup.sh #tailf /ro ...
- HTML中body与html的关系
转载自张鑫旭-鑫空间-鑫生活[http://www.zhangxinxu.com] 一.相关基础 一个div块级元素没有主动为其设置宽度和高度,浏览器会为其分配可使用的最大宽度(比如全屏宽度),但是不 ...
- vue2.0 element-ui中el-upload的before-upload方法返回false时submit()不生效解决方法
我要实现的功能是在上传文件之前校验是否表格中存在重复的数据,有的话,需要弹窗提示是否覆盖,确认之后继续上传,取消之后,就不再上传. 项目中用的element-ui是V1.4.3 <el-uplo ...
- python联系题1
一.有四个数字:1.2.3.4,能组成多少个互不相同且无重复数字的三位数?各是多少? 程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再去 掉不满足条件的排列. # _*_ ...
- Android View 绘制流程
Android 中 Activity 是作为应用程序的载体存在,代表着一个完整的用户界面,提供了一个窗口来绘制各种视图,当 Activity 启动时,我们会通过 setContentView 方法来设 ...