Spark本地运行成功,集群运行空指针异。
一个很久之前写的Spark作业,当时运行在local模式下。最近又开始处理这方面数据了,就打包提交集群,结果频频空指针。最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法。
这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错。错误如下:
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, node, executor 1): java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.take(RDD.scala:1326)
at org.apache.spark.ml.tree.impl.DecisionTreeMetadata$.buildMetadata(DecisionTreeMetadata.scala:112)
at org.apache.spark.ml.tree.impl.RandomForest$.run(RandomForest.scala:105)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:94)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:129)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:171)
at com.daxin.stat.har.OffLineTrainModel$.delayedEndpoint$com$daxin$stat$har$OffLineTrainModel$1(OffLineTrainModel.scala:145)
at com.daxin.stat.har.OffLineTrainModel$delayedInit$body.apply(OffLineTrainModel.scala:17)
at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
at scala.App$class.main(App.scala:76)
at com.daxin.stat.har.OffLineTrainModel$.main(OffLineTrainModel.scala:17)
at com.daxin.stat.har.OffLineTrainModel.main(OffLineTrainModel.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
Spark本地运行成功,集群运行空指针异。的更多相关文章
- hadoop本地运行与集群运行
开发环境: windows10+伪分布式(虚拟机组成的集群)+IDEA(不需要装插件) 介绍: 本地开发,本地debug,不需要启动集群,不需要在集群启动hdfs yarn 需要准备什么: 1/配置w ...
- storm单机运行与集群运行问题
使用trident接口时,storm读取kafka数据会将kafka消费记录保存起来,将消费记录的位置保存在tridentTopology.newStream()的第一个参数里, 如果设置成从头开始消 ...
- 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]
编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
- Spark学习之在集群上运行Spark
一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...
- 在local模式下的spark程序打包到集群上运行
一.前期准备 前期的环境准备,在Linux系统下要有Hadoop系统,spark伪分布式或者分布式,具体的教程可以查阅我的这两篇博客: Hadoop2.0伪分布式平台环境搭建 Spark2.4.0伪分 ...
- 【Spark】SparkStreaming-提交到集群运行
SparkStreaming-提交到集群运行 spark streaming 提交_百度搜索 SparkStreaming示例在集群中运行 - CSDN博客
- Spark wordcount开发并提交到集群运行
使用的ide是eclipse package com.luogankun.spark.base import org.apache.spark.SparkConf import org.apache. ...
- Spark学习之在集群上运行Spark(6)
Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力. 2. Spark既能适用于专用集群,也可以适用于共享的云计算 ...
随机推荐
- Gulp Error: Cannot find module 'jshint/src/cli'
I'm following sitepoint's An introduction to Gulp.js, but I'm stuck on step four, when I try to run ...
- C# 性能优化 之 秒表 Stopwatch。
生词解释:Diagnostics[,daɪəg'nɑstɪks] n.诊断学 using System.Diagnostics; Stopwatch sw = new Stopwatch (); sw ...
- 还需要注册的是我们还有一个是“交差集” cross join, 这种Join没有办法用文式图表示,因为其就是把表A和表B的数据进行一个N*M的组合,即笛卡尔积。表达式如下:
还需要注册的是我们还有一个是"交差集" cross join, 这种Join没有办法用文式图表示,因为其就是把表A和表B的数据进行一个N*M的组合,即笛卡尔积.表 ...
- MVC中的HtmlHelper详解
熟悉MVC开发的朋友都应该知道在MVC中,每一个Controller都对应一个View,并且CS文件和对应的ASPX文件也被分离了,更重要的是不再有服务器端控件在工具箱中,不再是代码后至了.MVC中的 ...
- Python简单的网络编程
OSI 模型介绍 应用层 -- 对接受的数据进行解释.加密与解密.压缩与解压缩 会话层 -- 通过传输层(端口号: 传输端口和接受端口) 建立数据传输的通路 传输层 -- 定义了一些传输数据的协议和端 ...
- 洛谷P2572 [SCOI2010]序列操作(ODT)
题解 题意 题目链接 Sol ODT板子题..... // luogu-judger-enable-o2 #include<bits/stdc++.h> #define LL long l ...
- 在vue配置sass
先npm两个插件 npm install sass-loader --save-dev npm install node-sass --save-dev 然后在webpack当中配置 { test: ...
- Gitlab--安装及汉化
简介 gitlab是一个利用 Ruby on Rails 开发的开源应用程序,实现一个自托管的Git 项目仓库,可通过Web界面迚行访问公开的戒者私人项目.Ruby on Rails 是一个可以使你开 ...
- 将Windows下的InfluxDB、Grafana做成Windows服务
从网上下载的Windows下的InfluxDB.Grafana,都是控制台程序,打开窗口后,很容易被别人给关掉,因此考虑做成Windows服务,nssm正是解决该问题的利器. 1.下载nssm htt ...
- 利用搜狐新闻语料库训练100维的word2vec——使用python中的gensim模块
关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会, ...