一个很久之前写的Spark作业,当时运行在local模式下。最近又开始处理这方面数据了,就打包提交集群,结果频频空指针。最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法。

这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错。错误如下:

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, node, executor 1): java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.take(RDD.scala:1326)
at org.apache.spark.ml.tree.impl.DecisionTreeMetadata$.buildMetadata(DecisionTreeMetadata.scala:112)
at org.apache.spark.ml.tree.impl.RandomForest$.run(RandomForest.scala:105)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:94)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:129)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:171)
at com.daxin.stat.har.OffLineTrainModel$.delayedEndpoint$com$daxin$stat$har$OffLineTrainModel$1(OffLineTrainModel.scala:145)
at com.daxin.stat.har.OffLineTrainModel$delayedInit$body.apply(OffLineTrainModel.scala:17)
at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.App$$anonfun$main$1.apply(App.scala:76)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
at scala.App$class.main(App.scala:76)
at com.daxin.stat.har.OffLineTrainModel$.main(OffLineTrainModel.scala:17)
at com.daxin.stat.har.OffLineTrainModel.main(OffLineTrainModel.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:132)
at com.daxin.stat.har.OffLineTrainModel$$anonfun$2.apply(OffLineTrainModel.scala:128)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)

Spark本地运行成功,集群运行空指针异。的更多相关文章

  1. hadoop本地运行与集群运行

    开发环境: windows10+伪分布式(虚拟机组成的集群)+IDEA(不需要装插件) 介绍: 本地开发,本地debug,不需要启动集群,不需要在集群启动hdfs yarn 需要准备什么: 1/配置w ...

  2. storm单机运行与集群运行问题

    使用trident接口时,storm读取kafka数据会将kafka消费记录保存起来,将消费记录的位置保存在tridentTopology.newStream()的第一个参数里, 如果设置成从头开始消 ...

  3. 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]

    编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...

  4. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

  5. Spark学习之在集群上运行Spark

    一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...

  6. 在local模式下的spark程序打包到集群上运行

    一.前期准备 前期的环境准备,在Linux系统下要有Hadoop系统,spark伪分布式或者分布式,具体的教程可以查阅我的这两篇博客: Hadoop2.0伪分布式平台环境搭建 Spark2.4.0伪分 ...

  7. 【Spark】SparkStreaming-提交到集群运行

    SparkStreaming-提交到集群运行 spark streaming 提交_百度搜索 SparkStreaming示例在集群中运行 - CSDN博客

  8. Spark wordcount开发并提交到集群运行

    使用的ide是eclipse package com.luogankun.spark.base import org.apache.spark.SparkConf import org.apache. ...

  9. Spark学习之在集群上运行Spark(6)

    Spark学习之在集群上运行Spark(6) 1. Spark的一个优点在于可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力. 2. Spark既能适用于专用集群,也可以适用于共享的云计算 ...

随机推荐

  1. 如何参与linux内核开发

    如何参与linux 内核开发   如果想评论或更新本文的内容,请直接联系原文档的维护者.如果你使用英文 交流有困难的话,也可以向中文版维护者求助.如果本翻译更新不及时或者翻 译存在问题,请联系中文版维 ...

  2. python集合操作和内置方法

    一 集合基本介绍 集合:在{}内用逗号隔开每个值,集合的特点: 每个值必须是不可变类型 集合是无序的 集合的值不能重复 集合的应用场景较少,最重要的应用场景为进行关系运算以及去重. 二 集合的操作 1 ...

  3. [转]Angular 4 *ngIf/Else

    本文转自:http://tylerscode.com/2017/03/angular-4-ngifelse/ As you may know it wasn’t that many months ag ...

  4. win10 关闭自动更新

    方法一 : 利用组策略关闭win10自动更新的步骤如下:1.按win+R打开“运行”,输入“gpedit.msc”,按下回车. 2.找到“计算机配置”→““管理模板”→“Windows 组件”→“Wi ...

  5. Git 实战手册(一): 批量修改log中的提交信息

    本文须知 教程所示图片使用的是 github 仓库图片,网速过慢的朋友请移步原文地址 有空就来看看个人技术小站, 我一直都在 背景介绍 事情的起源是这样的:迷恋的谷歌的我最近申请了一个新的 googl ...

  6. 解决Linux服务器tomact-8.0启动慢的问题

    环境信息: CentOS release 6.8 tomcat-8.0 JDK1.8 一.启动tomcat #sh /root/tomcat-8.0/bin/startup.sh #tailf /ro ...

  7. HTML中body与html的关系

    转载自张鑫旭-鑫空间-鑫生活[http://www.zhangxinxu.com] 一.相关基础 一个div块级元素没有主动为其设置宽度和高度,浏览器会为其分配可使用的最大宽度(比如全屏宽度),但是不 ...

  8. vue2.0 element-ui中el-upload的before-upload方法返回false时submit()不生效解决方法

    我要实现的功能是在上传文件之前校验是否表格中存在重复的数据,有的话,需要弹窗提示是否覆盖,确认之后继续上传,取消之后,就不再上传. 项目中用的element-ui是V1.4.3 <el-uplo ...

  9. python联系题1

    一.有四个数字:1.2.3.4,能组成多少个互不相同且无重复数字的三位数?各是多少? 程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再去 掉不满足条件的排列. # _*_ ...

  10. Android View 绘制流程

    Android 中 Activity 是作为应用程序的载体存在,代表着一个完整的用户界面,提供了一个窗口来绘制各种视图,当 Activity 启动时,我们会通过 setContentView 方法来设 ...