Memcached

Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap。其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信。

Memcached安装和基本使用

Memcached安装:

  • wget http://memcached.org/latest
  • tar -zxvf memcached-1.x.x.tar.gz
  • cd memcached-1.x.x
  • ./configure && make && make test && sudo make install
 
  • PS:依赖libevent
  •        yum install libevent-devel
  •        apt-get install libevent-dev

启动Memcached

 memcached -d -m     -u root -l 10.211.55.4 -p  -c  -P /tmp/memcached.pid

 参数说明:
-d 是启动一个守护进程
-m 是分配给Memcache使用的内存数量,单位是MB
-u 是运行Memcache的用户
-l 是监听的服务器IP地址
-p 是设置Memcache监听的端口,最好是1024以上的端口
-c 选项是最大运行的并发连接数,默认是1024,按照你服务器的负载量来设定
-P 是设置保存Memcache的pid文件

Memcached命令

  1. 存储命令: set/add/replace/append/prepend/cas
  2. 获取命令: get/gets
  3. 其他命令: delete/stats..

Python操作Memcached

安装API

python操作Memcached使用Python-memcached模块
下载安装:https://pypi.python.org/pypi/python-memcached
 
1、第一次操作

import memcache

mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.set("foo", "bar")
ret = mc.get('foo')
print ret Ps:debug = True 表示运行出现错误时,现实错误信息,上线后移除该参数。 2、天生支持集群 python-memcached模块原生支持集群操作,其原理是在内存维护一个主机列表,且集群中主机的权重值和主机在列表中重复出现的次数成正比 主机 权重
1.1.1.1 1
1.1.1.2 2
1.1.1.3 1 那么在内存中主机列表为:
host_list = ["1.1.1.1", "1.1.1.2", "1.1.1.2", "1.1.1.3", ] 如果用户根据如果要在内存中创建一个键值对(如:k1 = "v1"),那么要执行一下步骤: 根据算法将 k1 转换成一个数字
将数字和主机列表长度求余数,得到一个值 N( 0 <= N < 列表长度 )
在主机列表中根据 第2步得到的值为索引获取主机,例如:host_list[N]
连接 将第3步中获取的主机,将 k1 = "v1" 放置在该服务器的内存中 代码实现如下: mc = memcache.Client([('1.1.1.1:12000', 1), ('1.1.1.2:12000', 2), ('1.1.1.3:12000', 1)], debug=True) mc.set('k1', 'v1') 3、add
添加一条键值对,如果已经存在的 key,重复执行add操作异常 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.add('k1', 'v1')
# mc.add('k1', 'v2') # 报错,对已经存在的key重复添加,失败!!! 4、replace
replace 修改某个key的值,如果key不存在,则异常 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True)
# 如果memcache中存在kkkk,则替换成功,否则一场
mc.replace('kkkk','') 5、set 和 set_multi set 设置一个键值对,如果key不存在,则创建,如果key存在,则修改
set_multi 设置多个键值对,如果key不存在,则创建,如果key存在,则修改 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.set('key0', 'wupeiqi') mc.set_multi({'key1': 'val1', 'key2': 'val2'}) 6、delete 和 delete_multi delete 在Memcached中删除指定的一个键值对
delete_multi 在Memcached中删除指定的多个键值对 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) mc.delete('key0')
mc.delete_multi(['key1', 'key2']) 7、get 和 get_multi get 获取一个键值对
get_multi 获取多一个键值对 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True) val = mc.get('key0')
item_dict = mc.get_multi(["key1", "key2", "key3"]) 8、append 和 prepend append 修改指定key的值,在该值 后面 追加内容
prepend 修改指定key的值,在该值 前面 插入内容 #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True)
# k1 = "v1" mc.append('k1', 'after')
# k1 = "v1after" mc.prepend('k1', 'before')
# k1 = "beforev1after" 9、decr 和 incr   incr 自增,将Memcached中的某一个值增加 N ( N默认为1 )
decr 自减,将Memcached中的某一个值减少 N ( N默认为1 ) #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache mc = memcache.Client(['10.211.55.4:12000'], debug=True)
mc.set('k1', '') mc.incr('k1')
# k1 = 778 mc.incr('k1', 10)
# k1 = 788 mc.decr('k1')
# k1 = 787 mc.decr('k1', 10)
# k1 = 777 10、gets 和 cas 如商城商品剩余个数,假设改值保存在memcache中,product_count = 900
A用户刷新页面从memcache中读取到product_count = 900
B用户刷新页面从memcache中读取到product_count = 900 如果A、B用户均购买商品 A用户修改商品剩余个数 product_count=899
B用户修改商品剩余个数 product_count=899 如此一来缓存内的数据便不在正确,两个用户购买商品后,商品剩余还是 899
如果使用python的set和get来操作以上过程,那么程序就会如上述所示情况! 如果想要避免此情况的发生,只要使用 gets 和 cas 即可,如: #!/usr/bin/env python
# -*- coding:utf-8 -*-
import memcache
mc = memcache.Client(['10.211.55.4:12000'], debug=True, cache_cas=True) v = mc.gets('product_count')
# ...
# 如果有人在gets之后和cas之前修改了product_count,那么,下面的设置将会执行失败,剖出异常,从而避免非正常数据的产生
mc.cas('product_count', "") Ps:本质上每次执行gets时,会从memcache中获取一个自增的数字,通过cas去修改gets的值时,会携带之前获取的自增值和memcache中的自增值进行比较,如果相等,则可以提交,如果不想等,那表示在gets和cas执行之间,又有其他人执行了gets(获取了缓冲的指定值), 如此一来有可能出现非正常数据,则不允许修改。

Redis

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都 支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排 序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文 件,并且在此基础上实现了master-slave(主从)同步。

Redis安装和基本使用

  1. wget http://download.redis.io/releases/redis-3.0.6.tar.gz
  2. tar xzf redis-3.0.6.tar.gz
  3. cd redis-3.0.6
  4. make

启动服务端

src/redis-server

Python操作Redis

安装API

  1. sudo pip install redis
  2. or
  3. sudo easy_install redis
  4. or
  5. 源码安装
  6. 详见:https://github.com/WoLpH/redis-py
常用操作

1、操作模式

redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py。

#!/usr/bin/env python
# -*- coding:utf-8 -*- import redis r = redis.Redis(host='10.211.55.4', port=6379)
r.set('foo', 'Bar')
print r.get('foo') 2、连接池 redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池。 #!/usr/bin/env python
# -*- coding:utf-8 -*- import redis pool = redis.ConnectionPool(host='10.211.55.4', port=6379) r = redis.Redis(connection_pool=pool)
r.set('foo', 'Bar')
print r.get('foo') 3、管道 redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。 #!/usr/bin/env python
# -*- coding:utf-8 -*- import redis pool = redis.ConnectionPool(host='10.211.55.4', port=6379) r = redis.Redis(connection_pool=pool) # pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True) r.set('name', 'alex')
r.set('role', 'sb') pipe.execute() 4、发布订阅 订阅者: #!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from monitor.RedisHelper import RedisHelper
 
obj = RedisHelper()
redis_sub = obj.subscribe()
 
while True:
    msg= redis_sub.parse_response()
    print msg
    
发布者:  
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from monitor.RedisHelper import RedisHelper
 
obj = RedisHelper()
obj.public('hello')   

RabbitMQ

RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

RabbitMQ安装

  1. 安装配置epel源
  2.    $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
 
  1. 安装erlang
  2.    $ yum -y install erlang
  1. 安装RabbitMQ
  2.    $ yum -y install rabbitmq-server

安装API

  1. pip install pika
  2. or
  3. easy_install pika
  4. or
  5. 源码 https://pypi.python.org/pypi/pika
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

#!/usr/bin/env python
import pika # ######################### 生产者 ######################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close() #!/usr/bin/env python
import pika # ########################## 消费者 ########################## connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body):
print(" [x] Received %r" % body) channel.basic_consume(callback,
queue='hello',
no_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

1、acknowledgment 消息不丢失


no-ack = False,如果生产者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。


import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
host='10.211.55.4'))
channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() 2、durable   消息不丢失
生产者
#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel() # make message persistent
channel.queue_declare(queue='hello', durable=True) channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2, # make message persistent
))
print(" [x] Sent 'Hello World!'")
connection.close() 消费者
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel() # make message persistent
channel.queue_declare(queue='hello', durable=True) def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print 'ok'
    ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
                      queue='hello',
                      no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

3、消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

消费者

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print 'ok'
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,
                      queue='hello',
                      no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()


4、发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

发布者

#!/usr/bin/env python
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)
print(" [x] Sent %r" % message)
connection.close()

订阅者
#!/usr/bin/env python
import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         type='fanout')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

channel.queue_bind(exchange='logs',
                   queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r" % body)

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()

5、关键字发送

exchange type = direct

之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

消费者
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
                         type='direct') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue severities = sys.argv[1:]
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
    sys.exit(1) for severity in severities:
    channel.queue_bind(exchange='direct_logs',
                       queue=queue_name,
                       routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True) channel.start_consuming()
生产者
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
                         type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',
                      routing_key=severity,
                      body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

6、模糊匹配


exchange type = topic


在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。


  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词
发送者路由值              队列中
old.boy.python          old.*  -- 不匹配
old.boy.python          old.#  -- 匹配
消费者
#!/usr/bin/env python
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',
                         type='topic')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

binding_keys = sys.argv[1:]
if not binding_keys:
    sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
    sys.exit(1)

for binding_key in binding_keys:
    channel.queue_bind(exchange='topic_logs',
                       queue=queue_name,
                       routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()

生产者
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
                         type='topic') routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
                      routing_key=routing_key,
                      body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

SQLAlchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

  • MySQL-Python
  •     mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
 
  • pymysql
  •     mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
 
  • MySQL-Connector
  •     mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
 
  • cx_Oracle
  •     oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
  • 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
#!/usr/bin/env python
# -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) Base = declarative_base() class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50)) # 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息
# Base.metadata.create_all(engine) Session = sessionmaker(bind=engine)
session = Session() # ########## 增 ##########
# u = User(id=2, name='sb')
# session.add(u)
# session.add_all([
# User(id=3, name='sb'),
# User(id=4, name='sb')
# ])
# session.commit() # ########## 删除 ##########
# session.query(User).filter(User.id > 2).delete()
# session.commit() # ########## 修改 ##########
# session.query(User).filter(User.id > 2).update({'cluster_id' : 0})
# session.commit()
# ########## 查 ##########
# ret = session.query(User).filter_by(name='sb').first() # ret = session.query(User).filter_by(name='sb').all()
# print ret # ret = session.query(User).filter(User.name.in_(['sb','bb'])).all()
# print ret # ret = session.query(User.name.label('name_label')).all()
# print ret,type(ret) # ret = session.query(User).order_by(User.id).all()
# print ret # ret = session.query(User).order_by(User.id)[1:3]
# print ret
# session.commit()

python--第十二天总结(Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy)的更多相关文章

  1. 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其二

    一.概念 1.Memcached     Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...

  2. 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其一

    一.概念 1.Memcached     Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...

  3. Python全栈开发:RabbitMQ/Redis/Memcache/SQLAlchemy

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  4. python学习之模块导入,操作邮件,redis

    python基础学习06 模块导入 导入模块的顺序 1.先从当前目录下找 2.当前目录下找不到,再从环境变量中找,如果在同时在当前目录和环境变量中建立相同的py文件,优先使用当前目录下的 导入模块的实 ...

  5. Python 【第六章】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  6. Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

    Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...

  7. 十一天 python操作rabbitmq、redis

    1.启动rabbimq.mysql 在""运行""里输入services.msc,找到rabbimq.mysql启动即可 2.启动redis 管理员进入cmd, ...

  8. Python之路【第九篇】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

    Python之路[第九篇]:Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy   Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用 ...

  9. 文成小盆友python-num12 Redis发布与订阅补充,python操作rabbitMQ

    本篇主要内容: redis发布与订阅补充 python操作rabbitMQ 一,redis 发布与订阅补充 如下一个简单的监控模型,通过这个模式所有的收听者都能收听到一份数据. 用代码来实现一个red ...

随机推荐

  1. day06 内存地址 小数据池缓存机制

    1. 内存相关 示例一 v1=[11,22,33] v2=[11,22,33] #值相等 内存地址不等 v1=11 v2=11 #按理说内存地址应该不等,但是python为了优化使其内存地址相等 v1 ...

  2. 蓝图Tips

    有些好用的节点,不写下来,很容易忘掉. 1. 调用命令行 2. 播放视频 播放后要播一小段才能进行暂停!

  3. day02-python与变量

    1.堆区开辟空间存放 变量值  2.将存放 变量值 空间的地址提供给栈区  3.栈区为变量名开辟空间存放提供来的地址 变量直接相互赋值 定义变量的优化机制 定义变量与重新赋值

  4. zombodb 聚合函数

    zombodb 暴露基本上所有es 的集合函数为sql 函数,我们可以方便使用 比如 count FUNCTION zdb.count( index regclass, query zdbquery) ...

  5. java 从一个工程action 跳转到另外一个工程action

    实现功能:java 从一个工程action 跳转到另外一个工程action 在我们实际编程的过程中,大家一定遇到过这种情况,那就是在一个工程中,需要使用到另外一个工程的实体Bean和方法.那么遇到这种 ...

  6. 聊聊Java反射

    反射是Java最重要的特性.通过Java反射可以在运行时知道一个类的所有成员和方法,知道一个对象的类类型.成员和方法的所有信息,进而调用对象的方法或生成对象的代理或包装类. Java是面向对象语言,除 ...

  7. django无法同步mysql数据库 Error:1064

    [问题] 具体问题:新建django工程,使用django的manage.py的 migrate命令进行更改. 在初始化数据库表时,失败,错误信息为 django.db.migrations.exce ...

  8. Python撰写mail

    版本1   指定邮箱进行发送 """ 说明:指定账户密码进行邮件发送 由312051952@qq.com-->c4kaichen@163.com "&qu ...

  9. java中拼接两个对象集合

    目标:  根据两个list中每条记录的某个属性是否相同来拼接. 1.首先定义一个字符串 String str = "[{\"ITEMID\":2,\"ITEMN ...

  10. CentOS7 YUM安装与配置 MySQL5.7

    原文链接:http://blog.csdn.net/xyang81/article/details/51759200 安装环境:CentOS7 64位,MySQL5.7 1.配置YUM源 在MySQL ...