题目链接:https://vjudge.net/problem/POJ-2115

题意:模拟for循环for(int i=A;i!=B;i+=C),且数据范围为k位无符号数以内,即0~1<<k-1,如果能循环为有限次则输出循环次数,否则输出FOREVER。

思路:典型的扩展欧基里德题。题意即求Cx=B-A (mod 1<<k),可化为Cx+(1<<k)y=B-A (mod 1<<k)。不访令a=C,b=1<<k,c=B-A,即求ax+by=c (mod b)的解x。根据扩展欧基里德定理,该方程有解的条件为gcd(a,b)|c。令d=gcd(a,b),则ax0+by0=d可通过扩展欧基里德计算得到x0,y0和d的值。则原问题的解x=(c/d*x0%(b/d)+b/d)%(b/d)。理由是,c/d*x0可能超出1<<k(b)的范围,注意到ax+by=d等价与a(x+m*b/d)+b(y-m*a/d)=d,m为任意值,即通过对b/d取模能得到最小非负整数解,因为可能为负值,所以取模后仍要加上b/d,并再次取模。

AC代码:

 #include<cstdio>
using namespace std; typedef long long LL;
LL A,B,C,a,b,c,k; void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d){
if(!b) x=,y=,d=a;
else{ex_gcd(b,a%b,y,x,d);y-=x*(a/b);}
} int main(){
while(~scanf("%lld%lld%lld%lld",&A,&B,&C,&k),k){
a=C,b=1LL<<k;c=(B-A)%b;
LL x,y,d;
ex_gcd(a,b,x,y,d);
if(c%d==)
printf("%lld\n",(c/d*x%(b/d)+b/d)%(b/d));
else printf("FOREVER\n");
}
return ;
}

poj2115(扩展欧基里德定理)的更多相关文章

  1. poj1061(扩展欧基里德定理)

    题目链接:https://vjudge.net/problem/POJ-1061 题意:在一个首位相接的坐标轴上,A.B开始时分别位于X,Y处,每个单位时间向右移动m,n米,问是否能相遇,坐标轴长L. ...

  2. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

  3. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  4. 【bzoj1441】Min 扩展裴蜀定理

    题目描述 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 输入 第一行给出数字N,代表有N个数 下面一行给出N个数 输出 S ...

  5. [洛谷P4777] [模板] 扩展中国剩余定理

    扩展中国剩余定理,EXCRT. 题目传送门 重温一下中国剩余定理. 中国剩余定理常被用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a ...

  6. POJ2115(扩展欧几里得)

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23700   Accepted: 6550 Descr ...

  7. 学习笔记 - 中国剩余定理&扩展中国剩余定理

    中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...

  8. poj2115[扩展欧几里德]

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22260   Accepted: 6125 Descr ...

  9. 2019牛客暑期多校训练营(第十场)Han Xin and His Troops——扩展中国剩余定理

    题意 求解 $n$ 个模方程 $x \equiv a (mod \ b)$,不保证模数互素($1 \leq n \leq 100$,$0 \leq b < a< 10^5$). 分析 套扩 ...

随机推荐

  1. java中int和String之间的转换

    String 转为int int i = Integer.parseInt([String]); int i = Integer.valueOf(my_str).intValue(); int转为St ...

  2. Ubuntu16.04交叉工具链安装

    前言: 开发环境是64位的ubuntu16.04,交叉工具链是通过sudo apt-get install ....安装的,移植uboot2014.10,但是很奇怪,按照网上的介绍在start.s里面 ...

  3. hdu5007 Post Robot AC自动机

    DT is a big fan of digital products. He writes posts about technological products almost everyday in ...

  4. JVM的基本结构及其各部分详解(一)

    1 java虚拟机的基本结构如图: 1)类加载子系统负责从文件系统或者网络中加载Class信息,加载的类信息存放于一块称为方法区的内存空间.除了类的信息外,方法区中可能还会存放运行时常量池信息,包括字 ...

  5. GradleUserGuide中文版 19)Plugins 20)插件规范 21)Java插件

    https://blog.csdn.net/roymuste/article/details/51321881

  6. FTP文件传输服务

    FTP文件传输服务 一 .FTP 连接及传输的模式 l  控制连接:TCP21,用于发送FTP命令信息. l  数据连接:TCP 20, 用于上传下载数据. · 数据连接建立的类型: ·主动模式: 服 ...

  7. 【剑指offer】数组中只出现一次的数字

    题目:一个整型数组里除了两个数字之外,其他的数字都出现了偶数次.请写程序找出这两个只出现一次的数字. 思路1:使用HashMap存上所有的数字,数字作为Key,Value为对应的出现次数.这种做法可以 ...

  8. TabLayout+ViewPager 标题不显示问题

    第一次用TabLayout+ViewPager 组合在布局中写好了三个标题预览没问题而且也设置了 app:tabIndicatorColor="@color/colorAccent" ...

  9. Django_admin组件

    1.Django_admin组件的意义 作者:Eric 微信:loveoracle11g 新建Django项目bms图书管理系统 App为book book/models.py添加表关系 from d ...

  10. rabbitmq (三) 发布/订阅

    rabbitmq的目的并不是让生产者把消息直接发到队列里面去, 这样不能实现解耦的目的,也不利于程序的扩展. 所以就有交换机(exchanges)的概念. 交换机有几种类型:direct, topic ...