【BZOJ4259】残缺的字符串(FFT)
【BZOJ4259】残缺的字符串(FFT)
题面
给定两个字符串\(|S|,|T|\),两个字符串中都带有通配符。
回答\(T\)在\(S\)中出现的次数。
\(|T|,|S|<=300000\)
题解
和两个串基本一样。。
现在\(S\)串中也存在通配符,所以在函数后面再额外乘上一个\(S[i]\)就行了。
拆开式子后是三个卷积的形式。
时间复杂度\(O(nlogn)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 888888
const double Pi=acos(-1);
struct Complex{double a,b;}A1[MAX],B1[MAX],A2[MAX],B2[MAX],A3[MAX],B3[MAX],W[MAX],F[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int n,m,r[MAX],N,Z;
int pos[MAX],ans,l;
char S[MAX],T[MAX];
void FFT(Complex *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
if(opt==-1)for(int i=0;i<N;++i)P[i].a/=N;
}
int main()
{
scanf("%d%d",&m,&n);
scanf("%s",T);scanf("%s",S);
for(N=1;N<=(n+m-2);N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
for(int i=0;i<n;++i)
{
int x=((S[i]=='*')?0:(S[i]-96));
A1[i].a=x,A2[i].a=2*x*x,A3[i].a=x*x*x;
}
for(int i=0;i<m;++i)
{
int x=((T[m-i-1]=='*')?0:(T[m-i-1]-96));
B1[i].a=x,B2[i].a=x*x,B3[i].a=x*x*x;
}
FFT(A1,1);FFT(B1,1);FFT(A2,1);FFT(B2,1);FFT(A3,1);FFT(B3,1);
for(int i=0;i<N;++i)
F[i]=A1[i]*B3[i]-A2[i]*B2[i]+A3[i]*B1[i];
FFT(F,-1);
for(int i=m-1;i<n;++i)
if((int)(F[i].a+0.5)==0)pos[++ans]=i-m+1;
printf("%d\n",ans);
for(int i=1;i<=ans;++i)printf("%d ",pos[i]+1);puts("");
return 0;
}
【BZOJ4259】残缺的字符串(FFT)的更多相关文章
- BZOJ4259:残缺的字符串(FFT)
Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...
- BZOJ4259: 残缺的字符串(FFT 字符串匹配)
题意 题目链接 Sol 知道FFT能做字符串匹配的话这就是个裸题了吧.. 考虑把B翻转过来,如果\(\sum_{k = 0}^M (B_{i - k} - A_k)^2 * B_{i-k}*A_k = ...
- luoguP4173 残缺的字符串 FFT
luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...
- Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用
P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...
- P4173 残缺的字符串(FFT字符串匹配)
P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...
- 【BZOJ4259】残缺的字符串 FFT
[BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...
- BZOJ 4259: 残缺的字符串 [FFT]
4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...
- CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串
Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...
- 洛谷 P4173 残缺的字符串 (FFT)
题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...
- BZOJ4259 残缺的字符串(FFT)
两个串匹配时相匹配的位置位置差是相同的,那么翻转一个串就变成位置和相同,卷积的形式. 考虑如何使用卷积体现两个位置能否匹配.一个暴力的思路是每次只考虑一种字符,将其在一个串中设为1,并在另一个串中将不 ...
随机推荐
- C#实现一张塔松叶
前段时间,Insus.NET有实现一组字符串在输出时,靠左或靠右对齐.<输出的字符靠右对齐>http://www.cnblogs.com/insus/p/7953304.html 现在In ...
- (一)在 Blend 中绘制形状和路径
原文:(一)在 Blend 中绘制形状和路径 https://docs.microsoft.com/zh-cn/previous-versions/jj170881(v=vs.120) 在 Blend ...
- Nginx SSL+tomcat集群,request.getScheme() 取到https正确的协议
最近在做一个项目, 架构上使用了 Nginx +tomcat 集群, 且nginx下配置了SSL,tomcat no SSL,项目使用https协议 但是,明明是https url请求,发现 log里 ...
- Webpack 2 视频教程 007 - 配置 WDS 进行浏览器自动刷新
原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...
- xcode archive 去掉dsym文件和添加dsym文件
打包慢,让人发狂!!! 所以我们尝试的去掉一些测试时候用不到的东西 比如DSYM: 这DSYM是收集奔溃的.在测试的时候不需要这些东西的所以去掉就好: 项目 Build Settings -> ...
- 20135337——linux实践三:ELF文件格式分析(32位系统)
ELF文件格式分析 可重定位文件 十六进制形式显示内容 显示各个段.符号表相关信息 查看各个段信息 elf文件头信息 段表 符号表信息 查看堆栈 具体分析 1.ELF文件头信息(小字节优先,均十六进制 ...
- answer my questions from the book<构建之法>.
1)何为文档:文档时在一个项目进行的一生中所有记忆的集合.有需求分析.功能设计.在实现功能过程中也可以有一系列文档记录.测试文档等等. 2)结对工作等找队友会花费大量时间致耽误项目否:正如老师所讲,从 ...
- 素数问题练习_HDOJ1262
HDOJ1262_寻找素数对 和上一篇博客一样的解法,将10000以内的所有素数求出即可解题. #include<stdio.h> #include<stdlib.h> #in ...
- Ubuntu设置静态IP的方法
通过修改配置文件/etc/network/interfaces,如果/etc/resolv.conf中提示nameserver会被resolvconf修改,是临时文件,那么dns server也可以在 ...
- liuyan
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...