我计划预习五个小时离散,然后hmc补了这道他自认为非常的裸并且很傻逼自己可以一眼秒的简单题,然后给我讲了讲,然后我失去了一整晚的生命迹象。

首先我们可以发现一个神奇的现象,啊,先排个序,然后我们会发现,一个数 是 合法的(指左边的全部小于等于它,右边的全部大于等于它),当且仅当它在自己拍完序的位置上。

先不考虑很多相同的。 所以我们可以怎么做呢。从左到右枚举每个 合法的数,然后从左到右 枚举 起点。这样考虑,用dp[n]表示 从 1到 n ,n是合法的数的时候的方案数,ans[n]表示从1到n , 不合法的方案数。 c[n] 表示从 1 到 n 的 排列总数。 显然 。。。好难描述。

唔,显然我们这样枚举会有很多重复的情况对吧。  艹,我先把hmc讲给我我听懂了的复述一下,一个数是 合法的 方案数, 就是 它左边的数xjb排和右边的数xjb排然后乘起来吧。

好啊其实我觉得他就说了这一局有用的。

所以我们可以采用 总排列数-所有合法情况。然后合法情况会有重复的,这个时候就要进行类似容斥的操作对不对。ex: 1,2  1,2;被计算了两次

所以我们可以 计算出 左边 不合法的 方案数。 用不合法的 再去乘 右边合法的 就一定不会和 之前的重复了,因为之前计算的是左边的合法的。

那么首先我们要知道每个子区间的排列总数,可以边计算顺便枚举,也可以先预处理出来。我比较傻逼混在一起就神志不清了就预处理出来的。

然后我们用 ans[i] 表示 到i 为止 的答案, dp[i]表示到 i为止 合法的 方案数。

第一层枚举 现在的区间 ,[1,i]; 第二层枚举 子区间, j  from 1 to i  ;

然后维护就好了。

emmm你要是不知道费马小定理的话,,,我也木有办法  也可以用递推式求对不对。

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9+;
const int N = ;
ll inv[N];
ll n,c[N][N],a[N];
ll qpow(ll a,ll x){
ll res = ;
while (x){
if(x&)
res=res*a%mod;
a=a*a%mod;
x>>=;
}
return res;
}
void init(){
inv[]=;
for(int i=;i<=;i++)
inv[i]=qpow(i,mod-);
}
void slove(int n){
map<int,int> mp;
for(int i=;i<=n;i++){
c[i][i-]=;
mp.clear();
for(int j=i;j<=n;j++){
c[i][j]=c[i][j-]*(j-i+)%mod*inv[++mp[a[j]]]%mod;
}
c[i+][i]=;
}
}
ll dp[N],ans[N];
int main(){
init();
ios::sync_with_stdio(false);
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
}
sort(a+,a++n);
slove(n);
ans[]=;
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
dp[i]=(dp[i]+ans[j-]*c[j+][i])%mod;
}
//cout<<dp[i]<<' ';
ans[i]=(c[][i]-dp[i]+mod)%mod;
//cout<<ans[i]<<endl;
}
cout<<ans[n]<<endl;
}

gym102007 E的更多相关文章

随机推荐

  1. mormot支持TCP/IP

    mormot支持TCP/IP http.sys本来就构建于TCP/IP之上,因此HTTP.SYS是支持TCP/IP连接的. 笔者为此特意写了一个测试DEMO.TCP/IP连接成功. 如果客户端过一段时 ...

  2. 解决Android Studio出现Failed to open zip file. Gradle's dependency cache may be corrupt的问题

    问题如下图所示: 解决: 修改 gradle-wrapper.properties里的gradle的版本,与之前没有报错的gradle版本一致.就可以了 比如我报这个错的时候 : distributi ...

  3. Android编码学习之Adapter

    1. Apter的作用 Adapter是将数据绑定到UI界面上的桥接类.Adapter负责创建显示每个项目的子View和提供对下层数据的访问.Adapter的作用就是将要在列表内显示的数据和列表本身结 ...

  4. Spring Cloud Netflix Zuul 重试会自动跳过经常超时的服务实例的简单说明和分析

    在使用E版本的Spring Cloud Netflix Zuul内置的Ribbon重试功能时,发现Ribbon有一个非常有用的特性: 如果某个服务的某个实例经常需要重试,Ribbon则会在自己维护的一 ...

  5. 同步IO、异步IO、阻塞IO、非阻塞IO之间的联系与区别

    POSIX 同步IO.异步IO.阻塞IO.非阻塞IO,这几个词常见于各种各样的与网络相关的文章之中,往往不同上下文中它们的意思是不一样的,以致于我在很长一段时间对此感到困惑,所以想写一篇文章整理一下. ...

  6. [.NET] 一个获取随机数的新方式

    private Random GetRandomSeed() { byte[] bytes = new byte[4]; RNGCryptoServiceProvider rng = new RNGC ...

  7. 卷积转换为矩阵运算中填充数的计算-GEMM

    背景:最近在写一个基于opencl的正向神经网络框架,项目地址 https://github.com/aktiger/YoloOCLInference ,我从这里https://github.com/ ...

  8. Git忽略规则.gitignore忽略node_modules文件夹

    在项目文件夹里添加.gitignore的文件 打开文件,在里面添加 /node_modules

  9. 如何用jQuery获取选中行固定列的数据

    [本文出自天外归云的博客园] 问题:把选中行的ID统计出来,组成一个数组传给后台(选中行的特点:class为danger) 办法如下: // 多选后点击下线按钮 $("#offline&qu ...

  10. Shell 实现多线程(多任务)

    实现方案: 1.命令结尾添加:& #/bin/bash all_num= a=$(date +%H%M%S) ${all_num}` do { echo ${num} } & done ...