题意:

你现在有n个题目可以做,第i个题目需要的时间为t[i],你要选择其中的若干题目去做.
不妨令choose[i]表示第i个题目做不做.
定义cost=∑(i<=n)∑(i<=j<=n)(∏(i<=k<=j)choose[k])−∑(i<=n)choose[i]×t[i]
有q个询问,每个询问给出两个数p,x表示询问假设把t[p]修改成x,当你任意指定choose[]的值时,最大的cost是多少.

首先不考虑询问,dp一遍,f[i]表示前i个题目获得的最大收益,f[i]=max(f[i-1],max{f[j]+(i-j)*(i-j+1)-sum[i]+sum[j]}),斜率优化,正反各做一边

考虑询问,p要么选要么不选,不选的话很好说,选的话我们需要求出必选p整个序列的最大收益。

分治,每次处理必选x(mid<=x<=r),且x所在选择区间左端点在(l,mid),右端点在(mid,r)的答案,先求出以每个点为右端点的答案,再做一遍后缀最大值,就能求出每个x的答案。

第一次见分治还能这么用

#include<bits/stdc++.h>
#define int long long
#define N 300005
#define rev reverse
using namespace std;
int n,t[N],st[N],top,m;
int y[N],sum[N],f1[N],f2[N];
void yu(int *f)
{
f[0]=0;top=0;st[++top]=0;
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
for(int i=1;i<=n;i++)
{
f[i]=f[i-1];
while(top>1&&y[st[top]]-y[st[top-1]]<=2*i*(st[top]-st[top-1]))top--;
f[i]=max(f[i],f[st[top]]+(i-st[top])*(i-st[top]+1)/2-sum[i]+sum[st[top]]);
y[i]=i*i-i+2*f[i]+2*sum[i];
while(top>1&&(y[st[top]]-y[st[top-1]])*(i-st[top-1])<=(y[i]-y[st[top-1]])*(st[top]-st[top-1]))top--;
st[++top]=i;
}
}
int f[N],tmp[N];
void solve(int *f1,int *f2,int l,int r)
{
if(l==r){f[l]=max(f[l],f1[l-1]+f2[l+1]-t[l]+1);return ;}
int mid=(l+r)>>1;top=0;
for(int i=l-1;i<mid;i++)
{
y[i]=i*i-i+2*f1[i]+2*sum[i];
while(top>1&&(y[st[top]]-y[st[top-1]])*(i-st[top-1])<=(y[i]-y[st[top-1]])*(st[top]-st[top-1]))top--;
st[++top]=i;
}
for(int i=mid;i<=r;i++)
{
while(top>1&&y[st[top]]-y[st[top-1]]<=2*i*(st[top]-st[top-1]))top--;
tmp[i]=f2[i+1]+f1[st[top]]-sum[i]+sum[st[top]]+(i-st[top])*(i-st[top]+1)/2;
}
for(int i=r-1;i>=mid;i--)tmp[i]=max(tmp[i],tmp[i+1]);
for(int i=mid;i<=r;i++)f[i]=max(f[i],tmp[i]);
solve(f1,f2,l,mid);solve(f1,f2,mid+1,r);
}
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)scanf("%lld",&t[i]); yu(f1);rev(t+1,t+n+1);
yu(f2);
rev(t+1,t+n+1);rev(f2+1,f2+n+1);
for(int i=1;i<=n;i++)f[i]=-t[i];
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
solve(f1,f2,1,n); rev(t+1,t+n+1);rev(f+1,f+n+1);rev(f1+1,f1+n+1);rev(f2+1,f2+n+1);
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
solve(f2,f1,1,n);
rev(t+1,t+n+1);rev(f+1,f+n+1);rev(f2+1,f2+n+1);rev(f1+1,f1+n+1); scanf("%lld",&m);
for(int i=1;i<=m;i++)
{
int t1,t2;scanf("%lld%lld",&t1,&t2);
printf("%lld\n",max(f1[t1-1]+f2[t1+1],f[t1]-t2+t[t1]));
}
return 0;
}

  

AtCoder Regular Contest 066 F Contest with Drinks Hard的更多相关文章

  1. Atcoder Regular Contest 066 F genocide【JZOJ5451】

    题目 分析 \(s[i]\)表示a前缀和. 设\(f[i]\)表示做完了1~i的友谊颗粒的最优值(不一定选i),那么转移方程为 \[f[i]=max\{f[i-1],max\{f[j]-s[i]+s[ ...

  2. AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图

    AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...

  3. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  4. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  5. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  6. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  7. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  8. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

  9. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

随机推荐

  1. [UWP 自定义控件]了解模板化控件(2):模仿ContentControl

    ContentControl是最简单的TemplatedControl,而且它在UWP出场频率很高.ContentControl和Panel是VisualTree的基础,可以说几乎所有VisualTr ...

  2. 仓储层接口IBaseRepository解析

    //代码调用由业务层调用,调用方式详见源代码的业务层,升级直接替换TT模板即可,无需覆盖系统using System; using System.Collections.Generic; using ...

  3. Linux下rsyslog日志收集服务环境部署记录

    rsyslog 可以理解为多线程增强版的syslog. 在syslog的基础上扩展了很多其他功能,如数据库支持(MySQL.PostgreSQL.Oracle等).日志内容筛选.定义日志格式模板等.目 ...

  4. sql-server安装

    ubuntu安装sql-server https://docs.microsoft.com/zh-cn/sql/linux/quickstart-install-connect-ubuntu?view ...

  5. 最好使用%f输出浮点数据,acm

    今天做题的时候发现使用%lf输出的时候总是wrong,而一旦改成%f就ac了,询问学长后知道,不要用%lf输出,浮点都用%f 然而我还是有疑惑,如果%f容不下输出的数据怎么办呢? 于是我就去百度 原来 ...

  6. Notes of Daily Scrum Meeting(12.22)

    今天的团队任务总结如下: 团队成员 今日团队工作 陈少杰 进行网络连接的调试 王迪 优化搜索的算法 金鑫 准备前台的接口,查阅相关的资料 雷元勇 优化算法,对搜索进行测试 高孟烨 修改UI的接口,准备 ...

  7. 个人博客作业Week2 是否需要有代码规范

    问题:是否需要有代码规范 对于是否需要有代码规范,请考虑下列论点并反驳/支持: 1.这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 2.我是个艺术家,手艺人,我有 ...

  8. Daily Scrum NO.9

    工作概况 符美潇 昨日完成的工作 1.Daily Scrum.日常会议及日常工作的分配和查收. 2.根据第二小组的要求对数据库表的属性进行修改. 今日工作 1.Daily Scrum.日常会议及日常工 ...

  9. MSF MS11-050/10-087/Adobe攻击实践及内存保护技术

    MSF MS11-050/10-087/Adobe攻击实践及内存保护技术 内存攻击指的是攻击者利用软件安全漏洞,构造恶意输入导致软件在处理输入数据时出现非预期错误,将输入数据写入内存中的某些特定敏感位 ...

  10. Linux课题实践五——字符集总结与分析

    Linux课题实践三——字符集总结与分析 20135318  刘浩晨 字符是各种文字和符号的总称,包括各国家文字.标点符号.图形符号.数字等.字符集是多个字符的集合,字符集种类较多,每个字符集包含的字 ...