AtCoder Regular Contest 066 F Contest with Drinks Hard
题意:
你现在有n个题目可以做,第i个题目需要的时间为t[i],你要选择其中的若干题目去做.
不妨令choose[i]表示第i个题目做不做.
定义cost=∑(i<=n)∑(i<=j<=n)(∏(i<=k<=j)choose[k])−∑(i<=n)choose[i]×t[i]
有q个询问,每个询问给出两个数p,x表示询问假设把t[p]修改成x,当你任意指定choose[]的值时,最大的cost是多少.
首先不考虑询问,dp一遍,f[i]表示前i个题目获得的最大收益,f[i]=max(f[i-1],max{f[j]+(i-j)*(i-j+1)-sum[i]+sum[j]}),斜率优化,正反各做一边
考虑询问,p要么选要么不选,不选的话很好说,选的话我们需要求出必选p整个序列的最大收益。
分治,每次处理必选x(mid<=x<=r),且x所在选择区间左端点在(l,mid),右端点在(mid,r)的答案,先求出以每个点为右端点的答案,再做一遍后缀最大值,就能求出每个x的答案。
第一次见分治还能这么用
#include<bits/stdc++.h>
#define int long long
#define N 300005
#define rev reverse
using namespace std;
int n,t[N],st[N],top,m;
int y[N],sum[N],f1[N],f2[N];
void yu(int *f)
{
f[0]=0;top=0;st[++top]=0;
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
for(int i=1;i<=n;i++)
{
f[i]=f[i-1];
while(top>1&&y[st[top]]-y[st[top-1]]<=2*i*(st[top]-st[top-1]))top--;
f[i]=max(f[i],f[st[top]]+(i-st[top])*(i-st[top]+1)/2-sum[i]+sum[st[top]]);
y[i]=i*i-i+2*f[i]+2*sum[i];
while(top>1&&(y[st[top]]-y[st[top-1]])*(i-st[top-1])<=(y[i]-y[st[top-1]])*(st[top]-st[top-1]))top--;
st[++top]=i;
}
}
int f[N],tmp[N];
void solve(int *f1,int *f2,int l,int r)
{
if(l==r){f[l]=max(f[l],f1[l-1]+f2[l+1]-t[l]+1);return ;}
int mid=(l+r)>>1;top=0;
for(int i=l-1;i<mid;i++)
{
y[i]=i*i-i+2*f1[i]+2*sum[i];
while(top>1&&(y[st[top]]-y[st[top-1]])*(i-st[top-1])<=(y[i]-y[st[top-1]])*(st[top]-st[top-1]))top--;
st[++top]=i;
}
for(int i=mid;i<=r;i++)
{
while(top>1&&y[st[top]]-y[st[top-1]]<=2*i*(st[top]-st[top-1]))top--;
tmp[i]=f2[i+1]+f1[st[top]]-sum[i]+sum[st[top]]+(i-st[top])*(i-st[top]+1)/2;
}
for(int i=r-1;i>=mid;i--)tmp[i]=max(tmp[i],tmp[i+1]);
for(int i=mid;i<=r;i++)f[i]=max(f[i],tmp[i]);
solve(f1,f2,l,mid);solve(f1,f2,mid+1,r);
}
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)scanf("%lld",&t[i]); yu(f1);rev(t+1,t+n+1);
yu(f2);
rev(t+1,t+n+1);rev(f2+1,f2+n+1);
for(int i=1;i<=n;i++)f[i]=-t[i];
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
solve(f1,f2,1,n); rev(t+1,t+n+1);rev(f+1,f+n+1);rev(f1+1,f1+n+1);rev(f2+1,f2+n+1);
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+t[i];
solve(f2,f1,1,n);
rev(t+1,t+n+1);rev(f+1,f+n+1);rev(f2+1,f2+n+1);rev(f1+1,f1+n+1); scanf("%lld",&m);
for(int i=1;i<=m;i++)
{
int t1,t2;scanf("%lld%lld",&t1,&t2);
printf("%lld\n",max(f1[t1-1]+f2[t1+1],f[t1]-t2+t[t1]));
}
return 0;
}
AtCoder Regular Contest 066 F Contest with Drinks Hard的更多相关文章
- Atcoder Regular Contest 066 F genocide【JZOJ5451】
题目 分析 \(s[i]\)表示a前缀和. 设\(f[i]\)表示做完了1~i的友谊颗粒的最优值(不一定选i),那么转移方程为 \[f[i]=max\{f[i-1],max\{f[j]-s[i]+s[ ...
- AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
- AtCoder Regular Contest 095
AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
随机推荐
- 基于BlogEngine.NET搭建个人博客
早些时候在万网以我自己的英文名买了个域名 giantliu.com又看到万网有一个免费版本的虚拟主机,而且还支持.net4.5这年头支持.net4.5的免费主机不多,本来想用阿里云/windows a ...
- SCP和Rsync远程拷贝的几个技巧
scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器 ...
- iptables限制连接数(如sftp) 以及 谨防CC/DDOS攻击的配置 ( connlimit模块)
之前在公司服务器上部署了sftp,用于上传业务系统的附件.后来由于程序连接问题,使的sftp连接数过多(最多时高达400多个sftp连接数),因为急需要对sftp的连接数做严格限制.操作记录如下: 启 ...
- Centos 6.9下部署Oracle 11G数据库环境的操作记录
操作系统:Centos6.9(64Bit)Oracle:11g .11.2.0.4.0版本Ip地址:172.16.220.139 废话不多说了,下面记录安装过程:1)安装桌面环境 [root@vm01 ...
- 小学四则运算APP 第二次冲刺 第四天
团队成员:陈淑筠.杨家安.陈曦 团队选题:小学四则运算APP 第二次冲刺阶段时间:11.29~12.09 本次发布的是合并后的选择题功能界面的设置: ChoiceSet.java: package c ...
- 素数问题练习_HDOJ1262
HDOJ1262_寻找素数对 和上一篇博客一样的解法,将10000以内的所有素数求出即可解题. #include<stdio.h> #include<stdlib.h> #in ...
- HDU 2043 密码
http://acm.hdu.edu.cn/showproblem.php?pid=2043 Problem Description 网上流传一句话:"常在网上飘啊,哪能不挨刀啊-" ...
- Mysql 5.7.21 设置主从库同步
主从复制条件: Mysql 单机多实例安装参考Mysql 5.7.21 设置主从库同步 下面的操作是多实例主从复制,3306为主库,3307为从库. 主库要开启log-bin,主库和从库的server ...
- Angular @的作用
<!DOCTYPE html><html lang="zh-cn" ng-app="myApp"><head> <me ...
- jquery 語法
基本形式: $(selector).action() 文檔加載函數: $(document).Ready{ function(){ //將所有的函數寫到文檔加載函數里,可以防止頁面未加載完全,就執行j ...