The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元
题目来源
The 2018 ACM-ICPC China JiangSu Provincial Programming Contest
35.4%
- 1000ms
- 65536K
Persona5
Persona5 is a famous video game.
In the game, you are going to build relationship with your friends.
You have N friends and each friends have his upper bound of relationship with you. Let's consider the ithi^{th}ith friend has the upper bound UiU_iUi. At the beginning, the relationship with others are zero. In the game, each day you can select one person and increase the relationship with him by one. Notice that you can't select the person whose relationship with you has already reach its upper bound. If your relationship with others all reach the upper bound, the game ends.
It's obvious that the game will end at a fixed day regardless your everyday choices. Please calculate how many kinds of ways to end the game. Two ways are said to be different if and only if there exists one day you select the different friend in the two ways.
As the answer may be very large, you should output the answer mod 1000000007
Input Format
The input file contains several test cases, each of them as described below.
- The first line of the input contains one integers N(1≤N≤1000000)(1 \le N \le 1000000)(1≤N≤1000000), giving the number of friends you have.
- The second line contains NNN integers. The ithi^{th}ith integer represents UiU_iUi(1≤Ui≤1000000)( 1 \le U_i \le 1000000)(1≤Ui≤1000000), which means the upper bound with ithi^{th}ith friend. It's guarantee that the sum of UiU_iUi is no more than 1000000.
There are no more than 10 test cases.
Output Format
One line per case, an integer indicates the answer mod 1000000007.
样例输入
3
1 1 1
3
1 2 3
样例输出
6
60
题目大意:有n个朋友,开始和每个朋友的关系为0,给出每个朋友的关系上限,每天只能和一个朋友的关系度增加1,求有多少种方式能够和他们的关系都达到上限。
解题思路:这道题很明显就是高中数学里面的排列组合题,我们可以先忽略先后顺序,直接把每个关系度看成一个朋友然后去掉是同一朋友的关系度,本质就是多重集合的排列计数问题 令 sum=a(1)+a(2)+。。。+a(n) ,答案就是 sum!/a1!a2!...an! 需要先打表,预处理逆元跟阶乘,否则会超时 复杂度:O(nlogn)(预处理)
附上AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+;
const int mod=1e9+;
ll fac[maxn],facinv[maxn];
ll n,a[maxn]; ll qpow(ll a,ll b,ll p) //快速幂取模
{
ll res=;
while(b)
{
if(b&) res=res*a%p;
b>>=;
a=a*a%p;
}
return res;
} void init() //求出阶乘与逆元
{
fac[]=fac[]=facinv[]=facinv[]=;
for(int i=;i<maxn;i++)
{
fac[i]=fac[i-]*i%mod;
facinv[i]=facinv[i-]*qpow(i,mod-,mod)%mod;
}
} int main()
{
init();
while(cin>>n)
{
ll sum=;
ll ans=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
ans=ans*facinv[a[i]]%mod;
}
ans=ans*fac[sum]%mod;
printf("%d\n",ans);
}
return ;
}
求逆元参考博客:https://blog.csdn.net/baidu_35643793/article/details/75268911
The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元的更多相关文章
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set
Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest I. T-shirt
JSZKC is going to spend his vacation! His vacation has N days. Each day, he can choose a T-shirt to ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest(第六场)
A Plague Inc Plague Inc. is a famous game, which player develop virus to ruin the world. JSZKC wants ...
- C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest
We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...
- B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest
BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the ...
- ACM ICPC, Damascus University Collegiate Programming Contest(2018) Solution
A:Martadella Stikes Again 水. #include <bits/stdc++.h> using namespace std; #define ll long lon ...
- 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛
Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered ...
- 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛
Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...
- 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛
Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...
随机推荐
- Quartz.net 定时任务之储存与持久化和集群(源码)
一.界面 1.这篇博客不上教程.直接看结果(包括把quartz任务转换成Windows服务) (1).主界面 (2).添加任务(默认执行) (3).编辑(默认开启) (4).关闭和开启 2.代码说明 ...
- Effective C++学习笔记之#define
前言 条款02:尽量以const.enum.inline替换#define:尽可能用编译器代替不必要的预处理器. 内容 一.对于单纯常量 1.const 有两种特殊的const,常量指针和class专 ...
- 利用卷积神经网络(VGG19)实现火灾分类(附tensorflow代码及训练集)
源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Ten ...
- Jmeter(三十一)_数据驱动,业务关联
这种数据驱动的本质是:将测试的case,参数,url,预期结果,存储于本地excel中.运行脚本时,从文件中获取预期结果,将实际结果与预期结果比较,将实际结果,比较结果,响应状态码回写excel. 一 ...
- ACM注意事项
acm竞赛中不能使用一些屏幕控制和键盘读取的函数,如:getch(),geche(),gotoxy(),clrscr(),另外fflush(stdio)这个函数也不能使用,因为在有的编译 ...
- 《Linux内核分析》第八周学习小结 进程的切换和系统的一般执行过程
进程的切换和系统的一般执行过程 一.进程调度的三个时机: 1.中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记 ...
- Caffe2的安装
源码下载 首先下载caffe2的源码:https://github.com/caffe2/caffe2 网上都建议使用git命令下载,因为caffe2依赖了很多第三方模块,git会根据依赖自动下载第三 ...
- JQuery Cross Domain Ajax(jsonp)
http://www.pureexample.com/jquery/cross-domain-ajax.html http://www.pureexample.com/ExampleTesterII- ...
- ubunut下使用kubeadm离线安装k8s1.9
模仿转载的那个博客,简单记录下过程. 需要的文件. 原贴里面的:http://www.bladewan.com/2018/01/02/kubernetes_install/ 镜像文件,以及单独下载一些 ...
- Jquery 组 checkbox双向控制与tr变色
<!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...