过滤器查询

引言:过滤器的类型很多,但是可以分为两大类——比较过滤器,专用过滤器

过滤器的作用是在服务端判断数据是否满足条件,然后只将满足条件的数据返回给客户端;

hbase过滤器的比较运算符:

LESS  <

LESS_OR_EQUAL <=

EQUAL =

NOT_EQUAL <>

GREATER_OR_EQUAL >=

GREATER >

NO_OP 排除所有

Hbase过滤器的比较器(指定比较机制):

BinaryComparator  按字节索引顺序比较指定字节数组,采用Bytes.compareTo(byte[])

BinaryPrefixComparator 跟前面相同,只是比较左端的数据是否相同

NullComparator 判断给定的是否为空

BitComparator 按位比较

RegexStringComparator 提供一个正则的比较器,仅支持 EQUAL 和非EQUAL

SubstringComparator 判断提供的子串是否出现在value中。

Hbase的过滤器分类

  • 比较过滤器

1.1  行键过滤器RowFilter

Filter filter1 = new RowFilter(CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-22")));

scan.setFilter(filter1);

1.2  列族过滤器FamilyFilter

Filter filter1 = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("colfam3")));

scan.setFilter(filter1);

1.3 列过滤器QualifierFilter

filter = new QualifierFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("col-2")));

scan.setFilter(filter1);

1.4 值过滤器 ValueFilter

Filter filter = new ValueFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator(".4") );

scan.setFilter(filter1);

  • 专用过滤器

2.1 单列值过滤器 SingleColumnValueFilter  ----会返回满足条件的整行

SingleColumnValueFilter filter = new SingleColumnValueFilter(

Bytes.toBytes("colfam1"),

Bytes.toBytes("col-5"),

CompareFilter.CompareOp.NOT_EQUAL,

new SubstringComparator("val-5"));

filter.setFilterIfMissing(true);  //如果不设置为true,则那些不包含指定column的行也会返回

scan.setFilter(filter1);

2.2  SingleColumnValueExcludeFilter

与上相反

2.3 前缀过滤器 PrefixFilter----针对行键

Filter filter = new PrefixFilter(Bytes.toBytes("row1"));

scan.setFilter(filter1);

2.4 列前缀过滤器 ColumnPrefixFilter

Filter filter = new ColumnPrefixFilter(Bytes.toBytes("qual2"));

scan.setFilter(filter1);

2.4分页过滤器 PageFilter

public static void main(String[] args) throws Exception {

Configuration conf = HBaseConfiguration.create();

conf.set("hbase.zookeeper.quorum", "spark01:2181,spark02:2181,spark03:2181");

String tableName = "testfilter";

String cfName = "f1";

final byte[] POSTFIX = new byte[] { 0x00 };

HTable table = new HTable(conf, tableName);

Filter filter = new PageFilter(3);

byte[] lastRow = null;

int totalRows = 0;

while (true) {

Scan scan = new Scan();

scan.setFilter(filter);

if(lastRow != null){

//注意这里添加了POSTFIX操作,用来重置扫描边界

byte[] startRow = Bytes.add(lastRow,POSTFIX);

scan.setStartRow(startRow);

}

ResultScanner scanner = table.getScanner(scan);

int localRows = 0;

Result result;

while((result = scanner.next()) != null){

System.out.println(localRows++ + ":" + result);

totalRows ++;

lastRow = result.getRow();

}

scanner.close();

if(localRows == 0) break;

}

System.out.println("total rows:" + totalRows);

}

/**

* 多种过滤条件的使用方法

* @throws Exception

*/

@Test

public void testScan() throws Exception{

HTable table = new HTable(conf, "person_info".getBytes());

Scan scan = new Scan(Bytes.toBytes("person_rk_bj_zhang_000001"), Bytes.toBytes("person_rk_bj_zhang_000002"));

//前缀过滤器----针对行键

Filter filter = new PrefixFilter(Bytes.toBytes("rk"));

//行过滤器  ---针对行键

ByteArrayComparable rowComparator = new BinaryComparator(Bytes.toBytes("person_rk_bj_zhang_000001"));

RowFilter rf = new RowFilter(CompareOp.LESS_OR_EQUAL, rowComparator);

/**

* 假设rowkey格式为:创建日期_发布日期_ID_TITLE

* 目标:查找  发布日期  为  2014-12-21  的数据

* sc.textFile("path").flatMap(line=>line.split("\t")).map(x=>(x,1)).reduceByKey(_+_).map((_(2),_(1))).sortByKey().map((_(2),_(1))).saveAsTextFile("")

*

*

*/

rf = new RowFilter(CompareOp.EQUAL , new SubstringComparator("_2014-12-21_"));

//单值过滤器1完整匹配字节数组

new SingleColumnValueFilter("base_info".getBytes(), "name".getBytes(), CompareOp.EQUAL, "zhangsan".getBytes());

//单值过滤器2 匹配正则表达式

ByteArrayComparable comparator = new RegexStringComparator("zhang.");

new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator);

//单值过滤器3匹配是否包含子串,大小写不敏感

comparator = new SubstringComparator("wu");

new SingleColumnValueFilter("info".getBytes(), "NAME".getBytes(), CompareOp.EQUAL, comparator);

//键值对元数据过滤-----family过滤----字节数组完整匹配

FamilyFilter ff = new FamilyFilter(

CompareOp.EQUAL ,

new BinaryComparator(Bytes.toBytes("base_info"))   //表中不存在inf列族,过滤结果为空

);

//键值对元数据过滤-----family过滤----字节数组前缀匹配

ff = new FamilyFilter(

CompareOp.EQUAL ,

new BinaryPrefixComparator(Bytes.toBytes("inf"))   //表中存在以inf打头的列族info,过滤结果为该列族所有行

);

//键值对元数据过滤-----qualifier过滤----字节数组完整匹配

filter = new QualifierFilter(

CompareOp.EQUAL ,

new BinaryComparator(Bytes.toBytes("na"))   //表中不存在na列,过滤结果为空

);

filter = new QualifierFilter(

CompareOp.EQUAL ,

new BinaryPrefixComparator(Bytes.toBytes("na"))   //表中存在以na打头的列name,过滤结果为所有行的该列数据

);

//基于列名(即Qualifier)前缀过滤数据的ColumnPrefixFilter

filter = new ColumnPrefixFilter("na".getBytes());

//基于列名(即Qualifier)多个前缀过滤数据的MultipleColumnPrefixFilter

byte[][] prefixes = new byte[][] {Bytes.toBytes("na"), Bytes.toBytes("me")};

filter = new MultipleColumnPrefixFilter(prefixes);

//为查询设置过滤条件

scan.setFilter(filter);

scan.addFamily(Bytes.toBytes("base_info"));

//一行

//            Result result = table.get(get);

//多行的数据

ResultScanner scanner = table.getScanner(scan);

for(Result r : scanner){

/**

for(KeyValue kv : r.list()){

String family = new String(kv.getFamily());

System.out.println(family);

String qualifier = new String(kv.getQualifier());

System.out.println(qualifier);

System.out.println(new String(kv.getValue()));

}

*/

//直接从result中取到某个特定的value

byte[] value = r.getValue(Bytes.toBytes("base_info"), Bytes.toBytes("name"));

System.out.println(new String(value));

}

table.close();

}

Hbase Filter过滤器查询详解的更多相关文章

  1. Filter过滤器技术详解

    前言 有这样一个常见的开发场景,我们编写一套系统,或者分析一套系统如何实现的过程中,我们肯定会发现这套系统的拦截机制.比如说京东或者淘宝之类的,存在这种拦截机制,这套拦截机制能够过滤掉哪些错误的登录注 ...

  2. ElasticSearch第四步-查询详解

    ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticSea ...

  3. 大数据Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解

    微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...

  4. Lucene系列六:Lucene搜索详解(Lucene搜索流程详解、搜索核心API详解、基本查询详解、QueryParser详解)

    一.搜索流程详解 1. 先看一下Lucene的架构图 由图可知搜索的过程如下: 用户输入搜索的关键字.对关键字进行分词.根据分词结果去索引库里面找到对应的文章id.根据文章id找到对应的文章 2. L ...

  5. Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解

    转自:http://blog.csdn.net/iamdll/article/details/20998035 分类: 分布式 2014-03-11 10:31 156人阅读 评论(0) 收藏 举报 ...

  6. HBase - Filter - 过滤器的介绍以及使用 | 那伊抹微笑

    博文作者:那伊抹微笑 csdn 博客地址:http://blog.csdn.net/u012185296 itdog8 地址链接 : http://www.itdog8.com/thread-214- ...

  7. Solr安装入门、查询详解

    Solr安装入门:http://www.importnew.com/12607.html 查询详解:http://www.360doc.com/content/14/0306/18/203871_35 ...

  8. ThinkPHP视图查询详解

    ThinkPHP视图查询详解 参考http://www.jb51.net/article/51674.htm   这篇文章主要介绍了ThinkPHP视图查询,需要的朋友可以参考下     ThinkP ...

  9. MySQL简单查询详解-单表查询

    MySQL简单查询详解-单表查询 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查询的执行路径 一条SQL查询语句的执行过程大致如下图所示: 1>.客户端和服务端通过my ...

随机推荐

  1. ActiveRecord Nested Atrributes 关联记录,对嵌套属性进行CURD

    设置了Nested attributes后,你可以通过父记录来更新/新建/删除关联记录. 使用: #accepts_nested_attributes_for class method. 例如: cl ...

  2. 如何分析java内存泄漏问题

    java中的内存泄漏首先需要dump文件出来,主要包括内存dump.线程dump: 内存dump是指通过jmap -dump <pid>输出的文件,而线程dump是指通过jstack &l ...

  3. django项目的部署

    django项目部署到云服务器: 0.通过xshell连接远程主机服务器ip 1.使用xftp将项目发送到服务器端(也可以使用git) a.路径推荐为/var/project/(项目名) 2.给服务器 ...

  4. PAT 1069 The Black Hole of Numbers

    1069 The Black Hole of Numbers (20 分)   For any 4-digit integer except the ones with all the digits ...

  5. mybatis-generator自动生成代码工具

    1.在项目的配置文件中放入配置文件mybatis-generator-config.xml   根据情况修改下配置 <?xml version="1.0" encoding= ...

  6. js验证银行卡号 luhn校验规则

    <script type="text/javascript"> //luhn校验规则:16位银行卡号(19位通用): // 1.将未带校验位的 15(或18)位卡号从右 ...

  7. Vue.js 3.0 新特性预览

    总结起来,Vue 3 以下方面值得我们期待 : 更快 更小 更易于维护 更多的原生支持 更易于开发使用 完整的PPT:docs.google.com/presentatio… Evan 和 Vue 团 ...

  8. quartz.net的使用

    Quartz.NET简介 Quartz.NET作业调度框架是伟大组织OpenSymphony开发的quartz scheduler项目的.net延伸移植版本. Quartz.NET是一个开源的作业调度 ...

  9. Java WEB ----- 文件的上传

    最近学到的web阶段的文件的上传,就想记录一下,帮助自己复习以及帮助大家学习,一般我都会把上传的文件存到服务器中的web-inf 下面,因为这样用户不会直接访问到,我们存到数据库的一般都是路径.这里没 ...

  10. ionic框架使用步骤

    nodejs下载:https://npm.taobao.org/mirrors/node一.全局安装ionic: npm install -g cordova ionic 如果安装失败: npm in ...