CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目
Source
http://vjudge.net/problem/142058
Description
Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can choose three numbers such that they are three consecutive terms of an arithmetic progression.
Meaning that, how many triplets (i, j, k) are there such that 1 ≤ i < j < k ≤ N and Aj - Ai = Ak - Aj.
So the triplets (2, 5, 8), (10, 8, 6), (3, 3, 3) are valid as they are three consecutive terms of an arithmetic
progression. But the triplets (2, 5, 7), (10, 6, 8) are not.
Input
First line of the input contains an integer N (3 ≤ N ≤ 100000). Then the following line contains N space separated integers A1, A2, …, AN and they have values between 1 and 30000 (inclusive).
Output
Output the number of ways to choose a triplet such that they are three consecutive terms of an arithmetic progression.
Sample Input
10
3 5 3 6 3 4 10 4 5 2
Sample Output
9
分析
题目大概说给一个长N的序列A,问有多少个三元组<i,j,k>满足i<j<k且Ai+Ak=2Aj。
i<j<k这个关系不好搞,正解好像是分块:
- 把序列分解成若干块,每一块长度大约为B。分三种情况考虑:
- 对于三个都在同一块的:枚举各个块,然后通过枚举i和k并更新记录j的信息求出对数。时间复杂度$O(N/B\times B\times B)=O(NB)$。
- 对于只有两个在同一块的:枚举各个块,并更新记录前面所有块和后面所有块的信息,然后枚举块内的两个数,另一个数可能在块前也可能在块后,这样求出对数。时间复杂度$O(N/B\times B\times B)=O(NB)$。
- 对于三个数都在不同块的:枚举各个块,并更新记录前面所有块和后面所有块的信息,然后构造多项式用FFT求出前后两边组合成各个和的方案数,通过枚举块内的j即可求出对数。时间复杂度$O(N/B\times 65535\times 16+N/B\times B)$
- 然后就是B大小的设定,我设定的是$5\sqrt N$。
- 最后我连枚举都不会枚举。。还有有个地方只考虑是否大于0,没考虑是否小于等于30000,数组越界,WA了好久。。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 66666
const double PI=acos(-1.0); struct Complex{
double real,imag;
Complex(double _real,double _imag):real(_real),imag(_imag){}
Complex(){}
Complex operator+(const Complex &cp) const{
return Complex(real+cp.real,imag+cp.imag);
}
Complex operator-(const Complex &cp) const{
return Complex(real-cp.real,imag-cp.imag);
}
Complex operator*(const Complex &cp) const{
return Complex(real*cp.real-imag*cp.imag,real*cp.imag+cp.real*imag);
}
void setValue(double _real=0,double _imag=0){
real=_real; imag=_imag;
}
}; int len;
Complex wn[MAXN],wn_anti[MAXN]; void FFT(Complex y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
for(int h=2; h<=len; h<<=1){
Complex Wn=(op==1?wn[h]:wn_anti[h]);
for(int i=0; i<len; i+=h){
Complex W(1,0);
for(int j=i; j<i+(h>>1); ++j){
Complex u=y[j],t=W*y[j+(h>>1)];
y[j]=u+t;
y[j+(h>>1)]=u-t;
W=W*Wn;
}
}
}
if(op==-1){
for(int i=0; i<len; ++i) y[i].real/=len;
}
}
void Convolution(Complex A[],Complex B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i].setValue();
B[i].setValue();
} FFT(A,1); FFT(B,1);
for(int i=0; i<len; ++i){
A[i]=A[i]*B[i];
}
FFT(A,-1);
} int a[111111];
int cnt[33100],cnt0[33100],cnt1[33100];
Complex A[MAXN],B[MAXN]; int main(){
for(int i=0; i<MAXN; ++i){
wn[i].setValue(cos(2.0*PI/i),sin(2.0*PI/i));
wn_anti[i].setValue(wn[i].real,-wn[i].imag);
}
int n;
while(~scanf("%d",&n)){
for(int i=0; i<n; ++i){
scanf("%d",a+i);
}
int block=(int)(sqrt(n)+1e-6)*5; long long ans=0; for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
for(int j=i+1; j<block && b+j<n; ++j){
int tmp=a[b+i]+a[b+j];
if((tmp&1)==0){
ans+=cnt[tmp>>1];
}
++cnt[a[b+j]];
}
for(int j=i+1; j<block && b+j<n; ++j){
--cnt[a[b+j]];
}
}
} memset(cnt0,0,sizeof(cnt0));
memset(cnt1,0,sizeof(cnt1));
for(int i=0; i<n; ++i){
++cnt1[a[i]];
}
for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
--cnt1[a[b+i]];
}
for(int i=0; i<block && b+i<n; ++i){
for(int j=i+1; j<block && b+j<n; ++j){
int tmp=a[b+i]*2-a[b+j];
if(tmp>0 && tmp<=30000) ans+=cnt0[tmp];
tmp=a[b+j]*2-a[b+i];
if(tmp>0 && tmp<=30000) ans+=cnt1[tmp];
}
}
for(int i=0; i<block && b+i<n; ++i){
++cnt0[a[b+i]];
}
} memset(cnt0,0,sizeof(cnt0));
memset(cnt1,0,sizeof(cnt1));
for(int i=0; i<n; ++i){
++cnt1[a[i]];
}
for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
--cnt1[a[b+i]];
} for(int i=0; i<=30000; ++i){
A[i].setValue(cnt0[i]);
B[i].setValue(cnt1[i]);
}
Convolution(A,B,30001);
for(int i=0; i<block && b+i<n; ++i){
ans+=(long long)(A[a[b+i]<<1].real+0.5);
} for(int i=0; i<block && b+i<n; ++i){
++cnt0[a[b+i]];
}
} printf("%lld\n",ans);
}
return 0;
}
CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)的更多相关文章
- CodeChef - COUNTARI Arithmetic Progressions (FFT)
题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- CodeChef - COUNTARI FTT+分块
Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 339 Solved: 85[Submit][St ...
- [Educational Codeforces Round 16]D. Two Arithmetic Progressions
[Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
随机推荐
- Win7---------专区
待完善中-------------------------------------- 1.0Win7来历: 不算上最早的Windows版本从 95 98 2000 ME XP 2003 Vis ...
- Androidstudio报错UnsupportedClassVersionError
报错信息 Error:java.lang.UnsupportedClassVersionError: com/android/dx/command/Main : Unsupported major.m ...
- [译]在Node中使用indicative来验证model
原文: http://amanvirk.me/validating-models-in-node-js-using-indicative/\ 在nodejs中有关于验证model的包有许多, 我最喜欢 ...
- Xshell个性化设置,解决Xshell遇到中文显示乱码的问题
在同事的推荐下,今天开始使用Xshell连接Linux,但是发现一个“遇到中文显示乱码”的问题, 同事的解决方案如下: 平常给Linux上传文件之前,先把文件转换成UTF-8编码形式, 然后设置Xsh ...
- Qt应用程序图标设置
Qt应用程序图标设置 本文仅仅适用于windows下,linux等不适用. 下面说的图标,指的是程序文件的图标,而不是托盘图标或者说运行时任务栏的图标(任务栏和程序窗口的图标在windows/linu ...
- PHP PHPUnit的简单使用
1.window安装pear的教程:http://jingyan.baidu.com/article/ca41422fd8cf3d1eae99ed3e.html 2.在工作目录下,放两个文件: 1)C ...
- android 获取Datepicker日期
1.使用的Android5.0系统,实现上面效果使用了alertdialog 2.布局文件: layout_dataselect <?xml version="1.0" en ...
- Python None comparison: should I use “is” or ==?
Use is when you want to check against an object's identity (e.g. checking to see if var is None). Us ...
- html中表格元素的相关总结
表格元素相关总结: 1.在CSS中,内部表元素(如td.tr.col等)生成矩形框,这些矩形框包含内容.内边距和边框,但没有外边距,因此如果定义外边距,浏览器将忽略该定义:对于table元素,外边距有 ...
- 常用的windows cmd 的使用
cd/:返回根目录 cd 文件名:进入某文件 md 文件名:新建文件 dir:显示当前文件夹内的文件目录 del:删除文件 rd:删除空目录(目录中不能有子目录和文件) deltree:删除目录并删除 ...