Codeforces 题面传送门 & 洛谷题面传送门

一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧(

考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所在的行/列存在元素,那么它必须为这一行/列所在的元素相邻,因此我们考虑这样构造,当我们加入一个数 \(v\) 时,分以下几种情况考虑:

  • 如果 \(v\) 在原矩阵中既是行的最大值,也是列的最大值,那我们新开一行一列并将这个元素塞进去。即我们动态维护一个 \(R,C\) 表示目前有 \(R\) 行 \(C\) 列有元素,那么遇到这样的 \(v\),我们令 \(R,C\) 都加一然后令 \(b_{R,C}=v\) 即可。
  • 如果 \(v\)​​ 在原矩阵中只是行的最大值不是列的最大值,那么我们只令 \(R\)​​ 加 \(1\)​​ 而不用令 \(C\)​​ 加 \(1\)​​,然后还是令 \(b_{R,C}=v\)。
  • 如果 \(v\)​​ 在原矩阵中只是列的最大值不是行的最大值,与上面的情况不同之处在于,这次我们要令 \(C\) 加 \(1\) instead of \(R\)。
  • 如果 \(v\) 在原矩阵中既不是行的最大值也不是列的最大值,那么我们就找到一个位置 \((x,y)\) 满足 \((x,y)\) 上未填上数,并且 \((x,y)\) 恰好与两个已经填上格子的位置相邻,并令 \(b_{x,y}=v\)。可以证明我们总能找到这样的位置,因为在值最大的 \(RC+1\) 个格子中必然要么有超过 \(R\) 个行最大值,要么有超过 \(C\) 个列最大值,因此不会出现没地方填的情况。而显然如果前 \(R\) 行 \(C\) 列没有填满,由于我们构造的特殊性,我们总能找到一个空格子满足其与 \(2\) 个填上值的位置相邻,因此我们的构造总是合法的。这一部分可以通过维护一个队列,每次新填上一个值就遍历一遍与其相邻的格子,检验其是否与 \(2\) 个填上值的位置相邻来实现。

时间复杂度 \(\mathcal O(nm)\)

const int MAXN=250;
const int dx[]={1,0,-1,0};
const int dy[]={0,1,0,-1};
int n,m,a[MAXN+5][MAXN+5],vis1[MAXN*MAXN+5],vis2[MAXN*MAXN+5];
int X=0,Y=0,b[MAXN+5][MAXN+5];queue<pii> q;
bool check(int x,int y){
if(x<1||x>n||y<1||y>m) return 0;
if(b[x][y]) return 0;
int cnt=0;
for(int i=0;i<4;i++) cnt+=(b[x+dx[i]][y+dy[i]]>0);
return cnt==2;
}
void relax(int x,int y){
for(int i=0;i<4;i++) if(check(x+dx[i],y+dy[i])) q.push(mp(x+dx[i],y+dy[i]));
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++){
int mx=0;
for(int j=1;j<=m;j++) chkmax(mx,a[i][j]);
vis1[mx]=1;
}
for(int i=1;i<=m;i++){
int mx=0;
for(int j=1;j<=n;j++) chkmax(mx,a[j][i]);
vis2[mx]=1;
}
for(int i=n*m;i;i--){
if(vis1[i]&&vis2[i]) b[++X][++Y]=i,relax(X,Y);
else if(vis1[i]) b[++X][Y]=i,relax(X,Y);
else if(vis2[i]) b[X][++Y]=i,relax(X,Y);
else{
while(1){
pii p=q.front();q.pop();
if(!b[p.fi][p.se]){
b[p.fi][p.se]=i;
relax(p.fi,p.se);
break;
}
}
}
}
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
printf("%d%c",b[i][j]," \n"[j==m]);
return 0;
}

Codeforces 1383D - Rearrange(构造)的更多相关文章

  1. codeforces 1041 e 构造

    Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...

  2. Codeforces - 474D - Flowers - 构造 - 简单dp

    https://codeforces.com/problemset/problem/474/D 这道题挺好的,思路是这样. 我们要找一个01串,其中0的段要被划分为若干个连续k的0. 我们设想一个长度 ...

  3. Codeforces Global Round 8 B. Codeforces Subsequences(构造)

    题目链接:https://codeforces.com/contest/1368/problem/B 题意 构造最短的至少含有 $k$ 个 $codeforces$ 子序列的字符串. 题解 如下表: ...

  4. Codeforces 410C.Team[构造]

    C. Team time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

  5. Codeforces 716C[数论][构造]

    /* CF傻逼构造题 某人要经过n回合游戏,初始分值是2,等级为1. 每次有两种操作 1.无条件,分值加上自己的等级数. 2.当目前的数字是完全平方数并且该数字开方以后是等级数加1的整数倍,那么可以将 ...

  6. Tea Party CodeForces - 808C (构造+贪心)

    Polycarp invited all his friends to the tea party to celebrate the holiday. He has ncups, one for ea ...

  7. Codeforces.578E.Walking(构造)

    题目链接 \(Description\) 给定一个长为\(n\)的足迹序列(只包含\(L,R\)两种字符),你需要\(LRLRLR...\)这样交替在\(L\)和\(R\)上走(第一步可以选择\(L\ ...

  8. New Roads CodeForces - 746G (树,构造)

    大意:构造n结点树, 高度$i$的结点有$a_i$个, 且叶子有k个. 先确定主链, 然后贪心放其余节点. #include <iostream> #include <algorit ...

  9. Subordinates CodeForces - 737C (树,构造)

    大意: 求构造一棵树, 每个节点回答它的祖先个数, 求最少打错次数. 挺简单的一个构造, 祖先个数等价于节点深度, 所以只需要确定一个最大深度然后贪心即可. 需要特判一下根的深度, 再特判一下只有一个 ...

随机推荐

  1. 【原创】Linux v4l2框架分析

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  2. 什么是产品待办列表?(What is Product Backlog)

    正如scrum指南中所描述的,产品待办事项列表是一个紧急而有序的列表,其中列出了改进产品所需的内容.它是scrum团队承担的工作的唯一来源. 在sprint计划 (Sprint Planning)活动 ...

  3. Java:NIO 学习笔记-2

    Java:NIO 学习笔记-2 上一篇 NIO 学习笔记-1 看了 尚硅谷 的相应教程,此处又对比看了 黑马程序员 的课程 JAVA通信架构I/O模式,做了相应的笔记 前言 在 Java 的软件设计开 ...

  4. UVA-1016 Silly Sort

    UVA-1016 题目大意:给定一个长度为n的序列,每次操作可以交换任意两个数的位置,代价为两个数的和,求最小代价,将序列排成有序的. 首先,显然需要交换的数一定会形成环: 那么对于每一个环,我们有两 ...

  5. STM32采集AD的输入阻抗问题

    在做一款消费电子产品时,需要采集电池电压(3.3V-4.2V),同时在休眠的时候希望尽量减小待机电流.电池电压采集电路采用两个1%的300K电阻进行分压,由该电路引起的待机电路为4.2/(300+30 ...

  6. STM32定时器学习---基本定时器

    STM32F1系列的产品,除了互联网产品外,工作8个,3种定时器,其中一种就是基本定时器.那么STM32单片机的基本定时器如何操作以及编程呢? 下面我们就来详细的了解一下 STM32F1系列的产品,除 ...

  7. Java并发:ReadWriteLock 读写锁

    读写锁在同一时刻可以允许多个线程访问,但是在写线程访问,所有的读线程和其他写线程均被阻塞. 读写锁不像 ReentrantLock 那些排它锁只允许在同一时刻只允许一个线程进行访问,读写锁可以允许多个 ...

  8. VMware Workstation 16.2 Pro for Linux SLIC 2.6 & Unlocker

    请访问原文链接:https://sysin.org/blog/vmware-workstation-16-linux-slic/,查看最新版.原创作品,转载请保留出处. 作者:gc(at)sysin. ...

  9. 基于live555开发嵌入式linux系统的rtsp直播服务

    最近要搞一个直播服务,车机本身是个前后双路的Dvr,前路1080P 25fps,后路720P 50fps,现在要连接手机app预览实时画面,且支持前后摄像头画面切换. 如果要做直播,这个分辨率和帧率是 ...

  10. js点击事件 登录

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...