UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过。由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long long
,因此考虑另辟蹊径。注意到答案 \(\le 2^{63}-1\),也就是说当 \(k\) 比较大时值域也不会太大。因此考虑对 \(k\) 分类讨论。
\(k=1\) 时考虑计算每一位的贡献,注意到对于一位 \(i\),如果存在某个 \(a_j\) 满足 \(a_j\) 的 \(2^i\) 位为 \(1\),那么这一位在子集异或和中为 \(1\) 的概率就是 \(\dfrac{1}{2}\)。否则这一位自然不可能异或出 \(0\) 来,对答案的贡献自然就是 \(0\),贡献随便加一下即可。
\(k=2\) 时考虑用低次方和维护高次方和的套路,假设 \(x=2^{b_1}+2^{b_2}+\cdots+2^{b_k}\),那么显然有 \(x^2=(2^{b_1}+2^{b_2}+\cdots+2^{b_k})^2=\sum\limits_{i=1}^k\sum\limits_{j=1}^k2^{b_i}·2^{b_j}\),也就是说我们考虑每两个在异或和中同时为 \(1\) 的位 \(i,j\),答案加上 \(2^i,2^j\) 在 \(x\) 中同时为 \(1\) 的概率乘上 \(2^{i+j}\) 的和。考虑枚举 \(i,j\) 计算 \(2^i,2^j\) 位在 \(x\) 中同时为 \(1\) 的概率,显然满足不存在任何一个 \(a_p\) 的第 \(i\) 位为 \(1\),或者不存在任何一个 \(a_p\) 的第 \(i\) 位为 \(1\),那么 \(2^i,2^j\) 位在 \(x\) 中同时出现的概率为 \(0\)。否则如果对于任意 \(a_p\) 都有 \(a_p\) 的第 \(i,j\) 位同时为 \(0\) 或者同时为 \(1\),那么 \(2^i,2^j\) 在 \(x\) 中同时出现的概率为 \(\dfrac{1}{2}\),否则 \(2^i,2^j\) 在 \(x\) 中同时出现的概率为 \(\dfrac{1}{4}\),贡献累加一下即可。
\(k\ge 3\) 时我们考虑建出原序列的线性基,显然对于不在线性基中的元素,我们删除它们后答案不会发生变化。由于题目保证了答案 \(\le 2^{63}-1\),因此线性基中的个数不会太多。精确地估算一下大概就 \(\sum\limits_{i=0}^{2^p-1}x^3\) 是关于 \(2^p\) 的四次多项式,再除以一个 \(2^p\) 是关于 \(2^p\) 的三次多项式,当 \(p=22\) 时 \(4194304^3\) 就已经超过了 ull
的范围,就算乘上个小常数也超过了 \(2^{63}\),因此暴搜即可。
可以证明此题答案小数点后最多只有一位,证明大概就仿照 \(k=2\) 的思路,考虑枚举 \(k\) 位 \(b_1,b_2,b_3,\cdots,b_k\),答案加上 \(b_1,b_2,\cdots,b_k\) 位同时为 \(1\) 的概率乘上 \(2^{b_1+b_2+\cdots+b_k}\)。我们假设 \(b_1,b_2,b_3,\cdots,b_k\) 中不同数的个数为 \(c\),那么这些位产生的贡献应是某个整数乘上 \(2^{b_1+b_2+\cdots+b_k-c}\),分析一下可知当 \(b_i=0,c=1\) 时 \(2^{b_1+b_2+\cdots+b_k-c}\) 取到最小值 \(0.5\),因此此题小数点后最多只有一位 0.5
。
const int MAXN=1e5;
const int LOG_N=64;
int n,k,flg[LOG_N+2];u64 a[MAXN+5];
void print(u64 x){
printf("%llu",x>>1);
if(x&1) printf(".5");
}
namespace sub{
u64 b[LOG_N+2];
__int128_t res=0;int tot=0;
void insert(u64 x){
for(int i=LOG_N-1;~i;i--) if(x>>i&1){
if(!b[i]) return b[i]=x,void();
x^=b[i];
}
}
void dfs(int x,u64 sm){
if(x==LOG_N+1){
__int128_t mul=1;
for(int i=1;i<=k;i++) mul*=sm;
res+=mul;tot++;return;
} dfs(x+1,sm);
if(b[x]) dfs(x+1,sm^b[x]);
}
void solve(){
for(int i=1;i<=n;i++) insert(a[i]);
dfs(0,0);
if(tot!=1) res/=(tot/2);
else res*=2;
print((u64)res);
}
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%llu",&a[i]);
if(k==1){
u64 res=0;
for(int i=0;i<LOG_N;i++){
bool has1=0;
for(int j=1;j<=n;j++) has1|=(a[j]>>i&1);
if(has1) res+=1ull<<i;
} print(res);
} else if(k==2){
u64 res=0;
for(int i=0;i<LOG_N;i++) for(int j=1;j<=n;j++) flg[i]|=(a[j]>>i&1);
for(int i=0;i<LOG_N;i++) for(int j=0;j<LOG_N;j++){
bool sm=1;
if(!flg[i]||!flg[j]) continue;
for(int k=1;k<=n;k++) sm&=(!((a[k]>>i&1)^(a[k]>>j&1)));
if(sm) res+=1ull<<(i+j);
else res+=1ull<<(i+j-1);
} print(res);
} else sub::solve();
return 0;
}
UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)的更多相关文章
- uoj #46[清华集训2014]玄学
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...
- UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)
题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...
- bzoj 3816&&uoj #41. [清华集训2014]矩阵变换
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ#36. 【清华集训2014】玛里苟斯 线性基
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...
- uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
随机推荐
- 【数学】快速傅里叶变换(FFT)
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...
- RabbitMQ:从入门到搞定面试官
安装 使用docker安装,注意要安装tag后缀为management的镜像(包含web管理插件),我这里使用的是rabbitmq:3.8-management 1. 拉取镜像 shell docke ...
- RF射频传输,原理介绍,三分钟看懂!发射功率、接收灵敏度详解!
射频是什么? 官方说法:RF,Radio Frequency. (不懂的人,看了还是不懂,不过对于物联网行业的开发工程师.产品经理和项目经理,还是有需要对射频有个基础了解的.) 燚智能解读: 两个人, ...
- Python课程笔记(九)
本次课程主要学习了Excel和JSON格式的一些读写操作.课程代码 一.Excel数据读写操作 1.安装模块 pip install xlrd pip install xlwt 网不好可以采用三方库: ...
- 手写vue-router & 什么是Vue插件
博文分享 这篇文章你可以学习到: 实现一个自己的vue-router 了解什么是Vue的插件 学习b站大佬后做的笔记整理和源码实现 1.1.3一步一步带你弄懂vue-router核心原理及实现哔哩哔哩 ...
- linux安装后ping不通局域网其他主机的解决方式
安装了linux后尝试进行机器间的相互通讯,发现自己虚拟机并不能查看ip地址,也不能够ping通任何一台局域网内的主机 上网查了一下发现是网卡并没有打开,需要进行如下配置 查看ls 一下/etc/sy ...
- 【转】PLI是什么以及怎么用
programmable language interface 这里就说给verilog用的一些系统函数,还是无双大大的帖子 首先介绍了怎么让你自己写的pli系统函数在ncverilog里面可以成功调 ...
- AGC036 A-Triangle | 构造
题目链接 题意: 给出一个数$S(1\leqslant S \leqslant 10^{18})$. 要求在平面直角坐标系中找到三个点$(X_1,Y_1),(X_2,Y_2),(X_3,Y_3)$,满 ...
- 求树的直径【两遍BFS】
两遍BFS.从任意一个点出发,第一遍可以找到直径的一端,从这端出发即可找到另外一端. 证明:从U点出发,到达V[画个图便清晰了] 1.如果U在直径上,则V一定是直径的一个端点. 2.如果U不在直径上. ...
- hdu 1083 Courses(二分图最大匹配)
题意: P门课,N个学生. (1<=P<=100 1<=N<=300) 每门课有若干个学生可以成为这门课的代表(即候选人). 又规定每个学生最多只能成为一门课的代 ...