CF 585 E Present for Vitalik the Philatelist
CF 585 E Present for Vitalik the Philatelist
我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ 的集合的个数。
那么显然答案就是
\]
所以我们现在考虑怎么求 $ f $ 和 $ s $ 。
先考虑 $ f $ ,
\]
我们设 $ t(x) = \sum_{x|i} c_i $ ,不难发现这就是我的 这篇博客 里面的第二种卷积,可以筛出来。
那么
\]
然后又可以用第一种卷积来做,于是我们就跑出了 $ f $ 。
现在考虑怎么求 $ s $ ,我们可以假设 $ s'(x) $ 就是 gcd 为 $ x $ 的倍数的所有集合的个数。我们需要算出 $ x $ 的倍数的数字个数,就是 $ \sum_{x|i} c_i $ ,这个不就是前面的 $ t(x) $ 吗!
所以显然有
\]
同时我们知道
\]
这个东西就是第二个卷积的反过来的形式,也就是第四种卷积!
所以我们可以三次 $ O(w\log\log w) $ 跑过去啦。
开始看错 $ w $ 大小了。。MLE了两发。。
#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
#include "queue"
using namespace std;
#define MAXN 10000006
#define P 1000000007
int n;
int A[500006] , c[MAXN] , _[500006] , mu[MAXN] , s[MAXN];
int pri[MAXN] , en , lim;
void sieve( int x ) {
pri[0] = 1; mu[1] = 1;
for( int i = 2 ; i <= x ; ++ i ) {
if( !pri[i] ) pri[++ en] = i , mu[i] = -1;
for( int j = 1 ; i * pri[j] <= x && j <= en ; ++ j ) {
pri[i * pri[j]] = 1;
if( i % pri[j] == 0 ) { mu[i * pri[j]] = 0; break; }
mu[i * pri[j]] = -mu[i];
}
}
}
signed main() {
// freopen("in","r",stdin);
cin >> n;
for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&A[i]) , ++ c[A[i]] , lim = max( lim , A[i] );
sieve( lim );
for( int i = 1 ; i <= en ; ++ i )
for( int j = lim / pri[i] ; j ; -- j )
c[j] += c[j * pri[i]];
for( int i = 1 ; i <= lim ; ++ i ) mu[i] *= c[i];
for( int i = 1 ; i <= en ; ++ i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( mu[j * pri[i]] += mu[j] ) %= P;
_[0] = 1;for( int i = 1 ; i < 500006 ; ++ i ) _[i] = _[i - 1] * 2 % P;
for( int i = 1 ; i <= lim ; ++ i ) s[i] = _[c[i]] - 1;
for( int i = en ; i ; -- i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( s[j] -= s[j * pri[i]] ) %= P;
int ans = 0;
for( int i = 2 ; i <= lim ; ++ i ) ( ans += 1ll * s[i] * mu[i] % P ) %= P;
cout << ( ans + P ) % P << endl;
}
CF 585 E Present for Vitalik the Philatelist的更多相关文章
- 【CodeForces】585 E. Present for Vitalik the Philatelist
[题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...
- 【CF 585E】 E. Present for Vitalik the Philatelist
E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...
- CF585E. Present for Vitalik the Philatelist [容斥原理 !]
CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...
- 「CF585E」 Present for Vitalik the Philatelist
「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...
- CF585E:Present for Vitalik the Philatelist
n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数. 好的统计题. 其实就 ...
- Codeforces 585E. Present for Vitalik the Philatelist(容斥)
好题!学习了好多 写法①: 先求出gcd不为1的集合的数量,显然我们可以从大到小枚举计算每种gcd的方案(其实也是容斥),或者可以直接枚举gcd然后容斥(比如最大值是6就用2^cnt[2]-1+3^c ...
- E. Present for Vitalik the Philatelist 反演+容斥
题意:给n个数\(a_i\),求选一个数x和一个集合S不重合,gcd(S)!=1,gcd(S,x)==1的方案数. 题解:\(ans=\sum_{i=2}^nf_ig_i\),\(f_i\)是数组中和 ...
- Codeforces 585E - Present for Vitalik the Philatelist(简单莫反+狄利克雷前缀和)
Codeforces 题目传送门 & 洛谷题目传送门 一道不算太难的 D1E 罢--虽然我不会做/kk u1s1 似乎这场 Div1 挺水的?F 就是个 AC 自动机板子还被评到了 3k2-- ...
- [cf 585 E] Marbles
(一道Div2E不会,我太难了) 题意: 给你一个长度为$n$的颜色序列$A$,每次操作可以选择两个相邻元素交换,求把序列交换成“相同颜色挨在一起”所需的最少操作数. 按颜色排序:设颜色$col$在序 ...
随机推荐
- 一套比较好用的公众号UI框架-weui
最近工作原因 需要在pd端弄一套js类似bootstrap框架 由于使用环境是在公众号终端用的比较多! 类似上面这样的样式 所以我从微信官方开始找起 最后找到了WEUI 还别说 真的挺好用的 这是大佬 ...
- Noip模拟78 2021.10.16
这次时间分配还是非常合理的,但可惜的是$T4$没开$\textit{long long}$挂了$20$ 但是$Arbiter$上赏了蒟蒻$20$分,就非常不错~~~ T1 F 直接拿暴力水就可以过,数 ...
- 对dy和Δy的浅薄理解
一.导数定义 当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0) ...
- Java:final,finally 和 finalize 的区别
在Java中,final,final和finalize之间有许多差异.final,final和finalize之间的差异列表如下: No final finally finalize 1 final用 ...
- 访问单个结点的删除 牛客网 程序员面试金典 C++ Python
访问单个结点的删除 牛客网 程序员面试金典 C++ Python 题目描述 实现一个算法,删除单向链表中间的某个结点,假定你只能访问该结点. 给定待删除的节点,请执行删除操作,若该节点为尾节点,返回f ...
- Swift-技巧(二)模糊脸部功能
摘要 本文介绍模糊脸部的功能逻辑和实现方式,实现方式会尽可能的使用苹果提供的 API,保证功能高效率和简洁. 逻辑 模糊脸部的逻辑主要有两个流程,就是先找到脸部,然后模糊脸部,那么就引申出这两个实现问 ...
- DeWeb - 物资流转管理系统 - 开发1
近期一个朋友提到要做一个安卓手机上物资流转管理系统 准备采用deweb练练手! 大致的计划是先做成手机版网页,然后加壳做成APP 一. 登录 界面基本设计如下 用户表设计如下: 待续
- uni-app map组件关于marker标记点动态设置的问题
marker是Array类型,赋值的时候只能对整个数组进行更改赋值,不能只改变内部的对象,亲测Vue.$set()也不行 this.marker = [ { latitude: 39.90, long ...
- 将 ASP.Net Core WebApi 应用打包至 Docker 镜像
将 ASP.Net Core WebApi 应用打包至 Docker 镜像 运行环境为 Windows 10 专业版 21H1, Docker Desktop 3.6.0(67351),Docker ...
- Springboot 整合RabbitMq ,用心看完这一篇就够了
该篇文章内容较多,包括有rabbitMq相关的一些简单理论介绍,provider消息推送实例,consumer消息消费实例,Direct.Topic.Fanout的使用,消息回调.手动确认等. (但是 ...