CF 585 E Present for Vitalik the Philatelist

我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ 的集合的个数。

那么显然答案就是

\[\sum_{i > 1} f(i)s(i)
\]

所以我们现在考虑怎么求 $ f $ 和 $ s $ 。

先考虑 $ f $ ,

\[f(x) = \sum_{i} [gcd(i,x) = 1] c_i\\f(x) = \sum_{i} c_i \sum_{d|gcd(i,x)} \mu(d)\\f(x) = \sum_{d | x} \mu(d) \sum_{d|i} c_i
\]

我们设 $ t(x) = \sum_{x|i} c_i $ ,不难发现这就是我的 这篇博客 里面的第二种卷积,可以筛出来。

那么

\[f(x) = \sum_{d|x} \mu(d) t(d)
\]

然后又可以用第一种卷积来做,于是我们就跑出了 $ f $ 。

现在考虑怎么求 $ s $ ,我们可以假设 $ s'(x) $ 就是 gcd 为 $ x $ 的倍数的所有集合的个数。我们需要算出 $ x $ 的倍数的数字个数,就是 $ \sum_{x|i} c_i $ ,这个不就是前面的 $ t(x) $ 吗!

所以显然有

\[s'(x) = 2^{t(x)} - 1
\]

同时我们知道

\[s'(x) = \sum_{x|d} s(d)
\]

这个东西就是第二个卷积的反过来的形式,也就是第四种卷积!

所以我们可以三次 $ O(w\log\log w) $ 跑过去啦。

开始看错 $ w $ 大小了。。MLE了两发。。

#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
#include "queue"
using namespace std;
#define MAXN 10000006
#define P 1000000007
int n;
int A[500006] , c[MAXN] , _[500006] , mu[MAXN] , s[MAXN];
int pri[MAXN] , en , lim;
void sieve( int x ) {
pri[0] = 1; mu[1] = 1;
for( int i = 2 ; i <= x ; ++ i ) {
if( !pri[i] ) pri[++ en] = i , mu[i] = -1;
for( int j = 1 ; i * pri[j] <= x && j <= en ; ++ j ) {
pri[i * pri[j]] = 1;
if( i % pri[j] == 0 ) { mu[i * pri[j]] = 0; break; }
mu[i * pri[j]] = -mu[i];
}
}
}
signed main() {
// freopen("in","r",stdin);
cin >> n;
for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&A[i]) , ++ c[A[i]] , lim = max( lim , A[i] );
sieve( lim );
for( int i = 1 ; i <= en ; ++ i )
for( int j = lim / pri[i] ; j ; -- j )
c[j] += c[j * pri[i]];
for( int i = 1 ; i <= lim ; ++ i ) mu[i] *= c[i];
for( int i = 1 ; i <= en ; ++ i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( mu[j * pri[i]] += mu[j] ) %= P;
_[0] = 1;for( int i = 1 ; i < 500006 ; ++ i ) _[i] = _[i - 1] * 2 % P;
for( int i = 1 ; i <= lim ; ++ i ) s[i] = _[c[i]] - 1;
for( int i = en ; i ; -- i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( s[j] -= s[j * pri[i]] ) %= P;
int ans = 0;
for( int i = 2 ; i <= lim ; ++ i ) ( ans += 1ll * s[i] * mu[i] % P ) %= P;
cout << ( ans + P ) % P << endl;
}

CF 585 E Present for Vitalik the Philatelist的更多相关文章

  1. 【CodeForces】585 E. Present for Vitalik the Philatelist

    [题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...

  2. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

  3. CF585E. Present for Vitalik the Philatelist [容斥原理 !]

    CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...

  4. 「CF585E」 Present for Vitalik the Philatelist

    「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...

  5. CF585E:Present for Vitalik the Philatelist

    n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数. 好的统计题. 其实就 ...

  6. Codeforces 585E. Present for Vitalik the Philatelist(容斥)

    好题!学习了好多 写法①: 先求出gcd不为1的集合的数量,显然我们可以从大到小枚举计算每种gcd的方案(其实也是容斥),或者可以直接枚举gcd然后容斥(比如最大值是6就用2^cnt[2]-1+3^c ...

  7. E. Present for Vitalik the Philatelist 反演+容斥

    题意:给n个数\(a_i\),求选一个数x和一个集合S不重合,gcd(S)!=1,gcd(S,x)==1的方案数. 题解:\(ans=\sum_{i=2}^nf_ig_i\),\(f_i\)是数组中和 ...

  8. Codeforces 585E - Present for Vitalik the Philatelist(简单莫反+狄利克雷前缀和)

    Codeforces 题目传送门 & 洛谷题目传送门 一道不算太难的 D1E 罢--虽然我不会做/kk u1s1 似乎这场 Div1 挺水的?F 就是个 AC 自动机板子还被评到了 3k2-- ...

  9. [cf 585 E] Marbles

    (一道Div2E不会,我太难了) 题意: 给你一个长度为$n$的颜色序列$A$,每次操作可以选择两个相邻元素交换,求把序列交换成“相同颜色挨在一起”所需的最少操作数. 按颜色排序:设颜色$col$在序 ...

随机推荐

  1. Java:ConcurrentHashMap类小记-3(JDK8)

    Java:ConcurrentHashMap类小记-3(JDK8) 结构说明 // 所有数据都存在table中, 只有当第一次插入时才会被加载,扩容时总是以2的倍数进行 transient volat ...

  2. [技术博客] 敏捷软工——JavaScript踩坑记

    [技术博客] 敏捷软工--JavaScript踩坑记 一.一个令人影响深刻的坑 1.脚本语言的面向对象 面向对象特性是现代编程语言的基本特性,JavaScript中当然集成了面向对象特性.但是Java ...

  3. 修改git仓库的远程地址

    在我们开发的过程中,代码一般是由 git 来管理的,但有些时候我们的 git 仓库的地址可能发生了变换,比如我们使用的 gitLab 地址发生了变化,那么这个时候如何来将原项目的 git 地址进行修改 ...

  4. 【Azure Redis 缓存】Windows版创建 Redis Cluster 实验 (精简版)

    简介 学习Redis Cluster的第一步,即本地搭建Redis Cluster.但是在Redis的官方文档中,是介绍在Linux系统中搭建Redis Cluster.本文主要介绍在Windows系 ...

  5. iPhone SE切换颜色特效

    Apple 网站的特效, iPhone SE 共有黑.白.红三种颜色,在卷动页面的时候会逐步替换,看起来效果非常时尚,在此供上代码学习. <!DOCTYPE html> <html& ...

  6. 从0到1使用Kubernetes系列(五):Kubernetes Scheduling

    前述文章介绍了Kubernetes基本介绍,搭建Kubernetes集群所需要的工具,如何安装,如何搭建应用.本篇介绍怎么使用Kubernetes进行资源调度. Kubernetes作为一个容器编排调 ...

  7. [转]浅谈电路设计中应用DDR3处理缓存问题

    本文转自:浅谈电路设计中应用DDR3处理缓存问题_若海人生的专栏-CSDN博客 DDR系列SDRAM存储芯片的高速率.高集成度和低成本使其理所当然成为存储芯片中的一霸.在PC和消费电子领域自是如此,它 ...

  8. configure: error: C preprocessor "arm-linux-gnueabihf-g++" fails sanity check

    今天在交叉编译某个编解码库过程中碰到一个configure错误 运行configure的时候设置了一些配置项目 ./configure CC=arm-linux-gnueabihf-gcc CPP=a ...

  9. hdu 1080 Human Gene Functions(DP)

    题意: 人类基因由A.C.G.T组成. 有一张5*5的基因表.每格有一个值,叫相似度.例:A-C:-3.意思是如果A和C配对, 则它俩的相似度是-3[P.S.:-和-没有相似度,即-和-不能配对] 现 ...

  10. GDI+图形图像技术1

    System.Drawing命名空间提供了对GDI+基本图形功能的访问,其中一些子命名空间中提供了更高级的功能. GDI+由GDI发展而来,是Windows图形显示程序与实际物理设备之间的桥梁. GD ...