Luogu P2889 [USACO07NOV]挤奶的时间Milking Time

题目描述

传送门
Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houri ≤ N), an ending hour (starting_houri < ending_houri ≤ N), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ R ≤ N) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

奶牛Bessie在0~N时间段产奶。农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e。奶牛产奶后需要休息R小时才能继续下一次产奶,求Bessie最大的挤奶量。

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, M, and R

  • Lines 2..M+1: Line i+1 describes FJ’s ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

输出格式:

  • Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

输入输出样例

输入样例#1: 复制

12 4 2
1 2 8
10 12 19
3 6 24
7 10 31

输出样例#1: 复制

43

思路

  • 可以发现从挤奶开始一直到休息完是一个整体,都不能进行转移

  • 所以直接将挤奶时间看作一个整体变成 $time+r$ 进行转移就可以了

  • $f[i]$表示第i分钟的最优收益,$time[i]$ 为这次挤奶的持续时间, $w[i]$ 是这次挤奶的收益

  • 转移方程 $f[i+time[i]+r]=max(f[i+time[i]+r],f[i]+w[i])$

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define re register int
using namespace std;
int read(){
int x=0,w=1; char ch=getchar();
while(ch!='-'&&(ch<'0'&&ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*w;
}
int n,m,r,f[2000005],y;
bool tmp[2000005];
struct data{
int st,tim,w;
}cow[1005];
bool cmp(data cow,data b){
return cow.st<b.st;
}
int main(){
//freopen("p2889.in","r",stdin);
//freopen("p2889.out","w",stdout);
n=read(),m=read(),r=read();
n=n+r+10;
for(re i=1;i<=m;i++){
cow[i].st=read(),y=read(),cow[i].w=read();
cow[i].tim=y-cow[i].st+r;
tmp[cow[i].st]=1;
}
sort(cow+1,cow+1+m,cmp);
int j=1;
for(re i=0;i<=n;i++){
f[i]=max(f[i],f[i-1]);
if(tmp[i]){
for(;cow[j].st==i;j++){
f[i+cow[j].tim]=max(f[i+cow[j].tim],f[i]+cow[j].w);
}
}
}
printf("%d\n",f[n]);
return 0;
}

【题解】Luogu P2889 [USACO07NOV]挤奶的时间Milking Time的更多相关文章

  1. P2889 [USACO07NOV]挤奶的时间Milking Time

    P2889 [USACO07NOV]挤奶的时间Milking Time 奶牛Bessie在0~N时间段产奶.农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e.奶牛产奶后需要休息 ...

  2. bzoj1642 / P2889 [USACO07NOV]挤奶的时间Milking Time

    P2889 [USACO07NOV]挤奶的时间Milking Time 普通的dp 休息时间R其实就是把结束时间后移R个单位而已.但是终点也需要后移R位到n+R. 每个时间段按起始时间排序,蓝后跑一遍 ...

  3. [USACO07NOV]挤奶的时间Milking Time

    https://daniu.luogu.org/problemnew/show/2889 按右端点从小到大排序后DP dp[i] 到第i个时间段的最大产奶量 不能按左端点排序,第i段由第j段更新时,第 ...

  4. 题解 最优的挤奶方案(Optimal Milking)

    最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec  内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...

  5. [题解] Luogu P5446 [THUPC2018]绿绿和串串

    [题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...

  6. 【题解】Luogu P1204 [USACO1.2]挤牛奶Milking Cows

    原题传送门:P1204 [USACO1.2]挤牛奶Milking Cows 实际是道很弱智的题目qaq 但窝还是觉得用珂朵莉树写会++rp(窝都初二了,还要考pj) 前置芝士:珂朵莉树 窝博客里对珂朵 ...

  7. 题解 Luogu P2499: [SDOI2012]象棋

    关于这道题, 我们可以发现移动顺序不会改变答案, 具体来说, 我们有以下引理成立: 对于一个移动过程中的任意一个移动, 若其到达的位置上有一个棋子, 则该方案要么不能将所有棋子移动到最终位置, 要么可 ...

  8. 题解 luogu P1144 【最短路计数】

    本蒟蒻也来发一次题解第一篇请见谅 这个题有几个要点 1.无向无权图,建图的时候别忘记建来回的有向边[因此WA掉1次 2.无权嘛,那么边长建成1就好了2333333 3.最短路采用迪杰斯特拉(别忘用堆优 ...

  9. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

随机推荐

  1. 【转】风控中的特征评价指标(一)——IV和WOE

    转自:https://zhuanlan.zhihu.com/p/78809853 1.IV值的用途 IV,即信息价值(Information Value),也称信息量. 目前还只是在对LR建模时用到过 ...

  2. 什么是redis的缓存雪崩, 穿透, 击穿?

    目前的互联网系统没有几个不使用缓存的, 但是只要使用缓存的话就会面临这几个问题, 如使用redis缓存技术, 可能会遇到缓存的雪崩, 穿透, 以及击穿. 首先来看一个简单的正常缓存流程: 如用户访问J ...

  3. 剑指offer 数组中的重复数字

    问题描述: 在长度为n的数组中,所有的元素都是0到n-1的范围内. 数组中的某些数字是重复的,但不知道有几个重复的数字,也不知道重复了几次,请找出任意重复的数字. 例如,输入长度为7的数组{2,3,1 ...

  4. VSCode配置MSVC+VSCode使用easyx库,2021.5.13日配置

    VSCode配置MSVC+VSCode使用easyx库,2021.5.13日配置~~ 想必很多人和我一样,想用vscode编程c++,easyx库不支持MinGW,一般人都是直接使用vs2019安装e ...

  5. 定义私有属性: *String name; * int age; * String gender; * int salary; Date hiredate;//入职时间

    import java.text.SimpleDateFormat; import java.util.Date; /** * 定义私有属性: * String name; * int age; * ...

  6. 前端的MySQL基础

    前端MySQL 一.引言 MySQL是一个关系型数据库管理系统,在Web应用方面,MySQL是最好的应用之一.其主要的他点是体积小.速度块.总体成本低.源码开放 二.MySQL的构成 在我们开始学习M ...

  7. calico NetworkPolicy on kubernetes

    什么是网络策略 在Kubernetes平台中,要实现零信任网络的安全架构,Calico与istio是在Kubernetes集群中构建零信任网络必不可少的组件. 而建立和维护整个集群中的"零信 ...

  8. stressapptest测试用例testcase方法aarch64

    ### https://github.com/stressapptest/stressapptest aarch64 To build from source, the build/installat ...

  9. Ansible_编写Playbook文件

    一.Playbook的实施 1.Ansible playbook与临时命令概述: 临时命令可以作为一次性命令对一组目标主机运行一项简单的任务 play是针对清单中选定的主机运行的一组有序任务.play ...

  10. shell基础之exit,break,continue

    exit代码: 1 #!/bin/bash 2 echo "Is it morning? Please answer yes or no." 3 read YES_OR_NO 4 ...