NNVM Compiler,AI框架的开放式编译器
NNVM Compiler,AI框架的开放式编译器
深度学习已变得无处不在且不可或缺。在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长。宣布了TVM堆栈,以弥合深度学习框架与面向性能或效率的硬件后端之间的鸿沟。TVM堆栈使为深度学习框架轻松构建端到端编译变得容易。拥有适用于所有框架的统一解决方案甚至会更好。
威斯康星大学艾伦分校和AWS AI团队以及其他贡献者,宣布NNVM编译器的发布,NNVM编译器是一种开放式深度学习编译器,用于将前端框架工作负载直接编译到硬件后端。使用TVM堆栈中的两级中间表示(IR)来构建它。欢迎读者参考原始的TVM公告,以获取有关TVM堆栈的更多技术细节。借助TVM堆栈,NNVM编译器可以:
- 在高级图IR中表示并优化常见的深度学习工作负载
- 转换计算图以最大程度地减少内存利用率,优化数据布局并融合不同硬件后端的计算模式。
- 提出从前端深度学习框架到裸机硬件的端到端编译管道。

NNVM编译器可以直接从深度学习框架(例如Apache MXNet)中获取模型。支持模型交换格式,例如ONNX和CoreML。ONNX支持使NNVM能够从PyTorch,Caffe2和CNTK编译深度学习模型。CoreML前端支持将CoreML模型部署到非iOS设备。

优化与部署分离

NNVM编译器应用图级和张量级优化,共同优化以获得最佳性能。采用与现有深度学习框架不同的方法,后者将图形优化与部署运行时打包在一起。NNVM编译器采用了编译器的传统知识,将优化与实际部署运行时分开。这种方法提供了实质性的优化,但仍保持运行时的轻量级。编译后的模块仅取决于最小的TVM运行时,部署在Raspberry Pi或移动设备上时仅需300KB左右。
Performance
NNVM编译器仍在积极开发中,可以期待会有更多的改进,已经开始看到可喜的结果。对性能进行了基准测试,在两种典型的硬件配置上,与Apache MXNet进行了比较:Raspberry PI上的ARM CPU和AWS上的Nvidia GPU。尽管这两款芯片在架构上存在根本差异,可以使用相同的基础架构,只需要更改每种硬件的调度即可。
Nvidia GPU
GPU基准和调度,将NNVM编译器与Apache MXNet与CUDA8和cuDNN7作为Nvidia K80的后端进行了比较。这是一个非常强的基准,因为Apache MXNet会打开自动调整功能以从CuDNN中选择最佳内核。还使用了MXNet中优化的深度智能内核来优化MobileNet工作负载。

可以看出,NNVM编译器生成的代码胜过K80上的Apache MXNet。这些改进归因于联合图级别和内核级别的优化。值得注意的是,NNVM编译器无需依赖CuDNN等外部库,即可自行生成所有优化的GPU内核。
Raspberry Pi 3b
Rasberry Pi编译堆栈,将NNVM编译器与带有OpenBLAS和NNPack的Apache MXNet进行了比较。探索了使MXNet发挥最佳性能的设置:为3x3卷积打开了NNPACK中的Winograd卷积,启用了多线程,并禁用了其他调度程序线程(因此,所有线程都被NNPack使用)。

可以看出,在ResNet18上,NNVM编译器生成的代码快两倍。MobileNet上的差距,现有CPU DNN库中缺乏深度卷积。NNVM编译器利用直接生成有效的ARM代码的优势。
NNVM Compiler,AI框架的开放式编译器的更多相关文章
- NNVM AI框架编译器
NNVM AI框架编译器 深度学习已变得无处不在且不可或缺.看到对在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长.TVM堆栈弥合深度学习框架与面向性能或效率 ...
- AI框架中图层IR的分析
摘要:本文重点分析一下AI框架对IR有什么特殊的需求.业界有什么样的方案以及MindSpore的一些思考. 本文分享自华为云社区<MindSpore技术专栏 | AI框架中图层IR的分析> ...
- 昇思MindSpore全场景AI框架 1.6版本,更高的开发效率,更好地服务开发者
摘要:本文带大家快速浏览昇思MindSpore全场景AI框架1.6版本的关键特性. 全新的昇思MindSpore全场景AI框架1.6版本已发布,此版本中昇思MindSpore全场景AI框架易用性不断改 ...
- AI框架精要:设计思想
AI框架精要:设计思想 本文主要介绍飞桨paddle平台的底层设计思想,可以帮助用户理解飞桨paddle框架的运作过程,以便于在实际业务需求中,更好的完成模型代码编写与调试及飞桨paddle框架的二次 ...
- 中国人工智能AI框架自主研发
中国人工智能AI框架自主研发 中国AI界争相构建AI开源框架的背后,技术和业务层面的考量因素当然重要,但也不应忽视国家层面的政策支持.对于AI基础设施的建设,中国政府在<新一代人工智能发展规划& ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- 在windows上极简安装GPU版AI框架(Tensorflow、Pytorch)
在windows上极简安装GPU版AI框架 如果我们想在windows系统上安装GPU版本的AI框架,比如GPU版本的tesnorflow,通常我们会看到类似下面的安装教程 官方版本 安装CUDA 安 ...
- 通过 DLPack 构建跨框架深度学习编译器
通过 DLPack 构建跨框架深度学习编译器 深度学习框架,如Tensorflow, PyTorch, and ApacheMxNet,快速原型化和部署深度学习模型提供了强大的工具箱.不幸的是,易用性 ...
- AI框架类FAQ
AI框架类FAQ 数据处理 问题:如何在训练过程中高效读取数量很大的数据集? 答复:当训练时使用的数据集数据量较大或者预处理逻辑复杂时,如果串行地进行数据读取,数据读取往往会成为训练效率的瓶颈.这种情 ...
随机推荐
- 1003 Emergency (25分)
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- vue-cli 各文件夹的用途
- POJ 2752 同一个串的前后串
题解东北赛回来再补 #include<stdio.h> #include<string.h> int next[500000]; int ans[500000]; char s ...
- hdu5014 构造b数列使得t最大(小想法)
题意: 给你一个序列a,他有n+1个数,每个数的范围是ai >= 0 && a[i] <= n,同时任意两个数字都是不相同的,就是ai != aj (i!=j), ...
- Wordpress主题编辑器漏洞复现
Wordpress是全球流行的博客网站,全球有上百万人使用它来搭建博客.他使用PHP脚本和Mysql数据库来搭建网站. 那么,如果当我们在渗透测试过程中获得到了别人Wordpress的账号和密码之后, ...
- HBASE-使用问题-split region
问题描述: HBASE表的管理以REGION分区为核心,通常面临如下几个问题: 1) 数据如何存储到指定的region分区,即rowkey设计,region splitkey设计 2)设计的split ...
- Servlet三大域对象
Servlet三大域对象的应用 request.session.application(ServletContext) ServletContext是一个全局的储存信息的空间,服务器开始就存在,服务器 ...
- 一次 Go 程序 out of memory 排查及反思
前言 最近在搞数据导出模块,在测试大文件下载的过程中,报了 Out of memory (OOM) 错误,因为之前没有遇到过这类问题,导致此次排查问题花费了大半天,也走了不少弯路,特此复盘记录. 现象 ...
- Solon 的过滤器 Filter 和两种拦截器 Handler、 Interceptor
在web开发中,过滤器.拦截器是经常用到的功能.它可以帮我们限制流量.验证是否登陆.记录日志以及统计执行效率等等. 今天主要交流一下 Solon 框架中的过滤器和拦截器. Solon 是什么框架? S ...
- c#私钥加密统一JAVA
public static string RSADecryptByPavKey(string pavKey,string strEncryptString) { string clearText = ...