During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables.

Now she has a table filled with integers. The table consists of n rows and m columns. By \(a_{i, j}\) we will denote the integer located at the \(i\)-th row and the \(j\)-th column. We say that the table is sorted in non-decreasing order in the column \(j\) if \(a_{i, j} ≤ a_{i + 1, j}\) for all i from \(1\) to \(n - 1\).

Teacher gave Alyona \(k\) tasks. For each of the tasks two integers \(l\) and \(r\) are given and Alyona has to answer the following question: if one keeps the rows from \(l\) to \(r\) inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such \(j\) that \(a_{i, j} ≤ a_{i + 1, j}\) for all \(i\) from \(l\) to \(r - 1\) inclusive.

Alyona is too small to deal with this task and asks you to help!

Input

The first line of the input contains two positive integers \(n\) and \(m (1 ≤ n·m ≤ 100 000)\) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table.

Each of the following \(n\) lines contains \(m\) integers. The \(j\)-th integers in the \(i\) of these lines stands for \(a_{i, j} (1 ≤ a_{i, j} ≤ 10^9)\).

The next line of the input contains an integer \(k (1 ≤ k ≤ 100 000)\) — the number of task that teacher gave to Alyona.

The \(i\)-th of the next \(k\) lines contains two integers \(l_i\) and \(r_i\) \((1 ≤ l_i ≤ r_i ≤ n)\).

Output

Print "Yes" to the \(i\)-th line of the output if the table consisting of rows from \(l_i\) to \(r_i\) inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No".

Example

Input

5 4

1 2 3 5

3 1 3 2

4 5 2 3

5 5 3 2

4 4 3 4

6

1 1

2 5

4 5

3 5

1 3

1 5

Output

Yes

No

Yes

Yes

Yes

No

Note

In the sample, the whole table is not sorted in any column. However, rows \(1–3\) are sorted in column \(1\), while rows \(4–5\) are sorted in column \(3\).

题意

给出一个\(n\times m\)的矩阵,判断第\(l\)行~第\(r\)行中是否有一列是非递减的

思路

如果这题用暴力来写的话,时间复杂度为:\(O(n\times \sum^{k}_{i=1}(r_i-l_i))\),有题目可知,这个时间是肯定过不去的

所以我们可以预处理:预处理从每一行往上最高到哪一行,可以保持有至少一个非递增的序列

先处理每一列的每一个位置向上的非递增序列可以延伸到哪个位置,然后每一列的对应位置去一个最大值,即可得到该行可以向上延伸的最大位置。

每次输入\(l,r\),只需判断\(r\)行向上的位置是否小于等于\(l\)即可

代码

注意$ (1 ≤ n·m ≤ 100 000)$,可以直接用vector进行存,也可以用一维数组

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
vector<int>ve[maxn];
// 当前行能往上延伸的最高位置
int can[maxn];
// 当前列能往上的最高位置
int line[maxn];
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,m;
cin>>n>>m;
int x;
for(int i=0;i<m;i++)
ve[0].push_back(0);
for(int i=1;i<=n;i++)
for(int j=0;j<m;j++)
cin>>x,ve[i].push_back(x);
for(int i=1;i<=n;i++)
{
can[i]=i;
for(int j=0;j<m;j++)
{
int now_num=ve[i][j];
int up_num=ve[i-1][j];
if(now_num<up_num)
line[j]=i;
can[i]=min(can[i],line[j]);
}
}
int t;
cin>>t;
while(t--)
{
int l,r;
cin>>l>>r;
if(can[r]>l)
cout<<"No\n";
else
cout<<"Yes\n";
}
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}

Codeforces 777C:Alyona and Spreadsheet(预处理)的更多相关文章

  1. Codeforces 777C Alyona and Spreadsheet

    C. Alyona and Spreadsheet time limit per test:1 second memory limit per test:256 megabytes input:sta ...

  2. Codeforces 777C Alyona and Spreadsheet(思维)

    题目链接 Alyona and Spreadsheet 记a[i][j]为读入的矩阵,c[i][j]为满足a[i][j],a[i - 1][j], a[i - 2][j],......,a[k][j] ...

  3. Codeforces 777C - Alyona and Spreadsheet - [DP]

    题目链接:http://codeforces.com/problemset/problem/777/C 题意: 给定 $n \times m$ 的一个数字表格,给定 $k$ 次查询,要你回答是否存在某 ...

  4. codeforces 777C.Alyona and Spreadsheet 解题报告

    题目链接:http://codeforces.com/problemset/problem/777/C 题目意思:给出一个 n * m 的矩阵,然后问 [l, r] 行之间是否存在至少一列是非递减序列 ...

  5. Codeforces Round #401 (Div. 2) C Alyona and Spreadsheet —— 打表

    题目链接:http://codeforces.com/contest/777/problem/C C. Alyona and Spreadsheet time limit per test 1 sec ...

  6. C Alyona and Spreadsheet Codeforces Round #401(Div. 2)(思维)

    Alyona and Spreadsheet 这就是一道思维的题,谈不上算法什么的,但我当时就是不会,直到别人告诉了我,我才懂了的.唉 为什么总是这么弱呢? [题目链接]Alyona and Spre ...

  7. codeforces 777C

    C.Alyona and Spreadsheet During the lesson small girl Alyona works with one famous spreadsheet compu ...

  8. Codeforces777C Alyona and Spreadsheet 2017-05-04 17:46 103人阅读 评论(0) 收藏

    C. Alyona and Spreadsheet time limit per test 1 second memory limit per test 256 megabytes input sta ...

  9. Codeforces E. Alyona and a tree(二分树上差分)

    题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. php代码审计入门前必看

    首先先介绍什么是代码审计? 代码审计:是指针对源代码进行检查,寻找代码中的bug,这是一项需要多方面技能的技术 包括:对编程的掌握,漏洞形成原理的理解,系统和中间件等的熟悉 2.为什么要进行代码审计, ...

  2. 同一局域网,远程连接别人的Mysql数据库

    数据库:MySQL 工具: Navicat, 电脑A连接电脑B的数据库, 确保两部电脑都是在同一个局域网,都是连着同一个路由器,或者连接同一个WiFi, 如果不确定是否为同一个局域网,可以打开cmd, ...

  3. javaWeb - 2 — ajax、json — 最后附:后台获取前端中的input type = "file"中的信息 — 更新完毕

    1.ajax是什么? 面向百度百科一下就知道了,这里就简单提炼一下 Ajax即Asynchronous Javascript And XML(异步JavaScript和XML).当然其实我们学的应该叫 ...

  4. 理解ASP.NET Core - 模型绑定&验证(Model Binding and Validation)

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 模型绑定 什么是模型绑定?简单说就是将HTTP请求参数绑定到程序方法入参上,该变量可以是简单类 ...

  5. 加密时java.security.InvalidKeyException: Illegal key size or default parameters解决办法

    需 Java几乎各种常用加密算法都能找到对应的实现.因为美国的出口限制,Sun通过权限文件(local_policy.jar.US_export_policy.jar)做了相应限制.因此存在一些问题: ...

  6. 【Linux】【Commands】systemd

    1. 系统启动流程:POST --> Boot Sequeue(BIOS) --> Bootloader(MBR) --> Kernel(ramdisk) --> rootfs ...

  7. 【Xcode】sh: pause: command not found

    system("pause"); 只适合于DOS和Windows系统,不适合Linux系统. 直接删掉就可以. 或者改为: #include <unistd.h> pa ...

  8. 04 - Vue3 UI Framework - 文档页

    官网的首页做完了,接下来开始做官网的文档页 返回阅读列表点击 这里 路由设计 先想想我们需要文档页通向哪些地方,这里直接给出我的设计: 所属 子标题 跳转路径 文件名(*.vue) 指南 介绍 /do ...

  9. 工时资源(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 资源既然各种导入都会发生些不可描述的事,那就手工建立吧.但是问题又来了,资源还分种类的:工时资源.材料资源和成本资源. 好 ...

  10. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...