题目很好,考察对主席树的深入理解与灵活运用。

首先看看一般解决中位数的思路,我们二分一个 \(mid\),将区间中 \(\ge mid\) 的数置为 \(1\),小于的置为 \(-1\),然后求区间和,若大于等于零则 \(mid\) 还能增大,否则减小。

现在就有了两个问题:第一,区间不固定;第二,每次二分一个答案就要重构区间,复杂度爆炸。

现在我们来仔细分析一下主席树的结构,首先,它是一个每个点都建了一棵线段树,形成前缀和的形式;每棵线段树又与区间有关。抽象地说,我们可以把第一个特征看作解决时间这一维限制,第二个特征解决位置这一维限制,即主席树同时解决了两维限制。

那再来找找这题的两维限制。如果我们把每次二分看做时间先后的操作,将每次二分的值作为一个“点”建线段树,就相当于预处理出了每次二分后区间的情况,省去了重构。再把权值离散化,那么就映射到了 \(1\sim n\) 的区间,对于 \(mid+1\),显然只有 \(mid\) 这个权值由 \(1\) 变成了 \(-1\) ,这其实只是一个单点修改的操作,这样就解决了第二个问题。

对于第一个问题,我们可以用最大子段和的思路维护 \(lmax,rmax,sum\) 的 tag,那么对于题目给出的区间 \([a,b],[c,d]\) ,答案即是 \([a,b]\) 的 \(rmax\)、\([b+1,c-1]\) 的 \(sum\),\([c,d]\) 的 \(lmax\) 之和。

哪里没有讲清楚可以看代码进一步理解。

#include <bits/stdc++.h>
#define l(x) t[x].l
#define r(x) t[x].r
using namespace std; const int N=1e5+5;
struct Tree
{
int l,r,lmax,rmax,sum;
void clear() {lmax=rmax=-N,l=r=sum=0;}
}t[N*20],Ans;
int n,Q,a[N],q[4],root[N],cntnode,id[N],ans; void build(int &rt,int l,int r)
{
t[rt=++cntnode]=(Tree){0,0,r-l+1,r-l+1,r-l+1};
if(l==r) return; int mid=l+r>>1;
build(l(rt),l,mid); build(r(rt),mid+1,r);
} inline void pushup(int rt)
{
t[rt].lmax=max(t[l(rt)].lmax,t[l(rt)].sum+t[r(rt)].lmax);
t[rt].rmax=max(t[r(rt)].rmax,t[r(rt)].sum+t[l(rt)].rmax);
t[rt].sum=t[l(rt)].sum+t[r(rt)].sum;
} void Insert(int &rt,int pre,int l,int r,int pos)
{
t[rt=++cntnode]=t[pre];
if(l==r) {t[rt].lmax=t[rt].rmax=t[rt].sum=-1; return;}
int mid=l+r>>1;
if(pos<=mid) Insert(l(rt),l(pre),l,mid,pos);
else Insert(r(rt),r(pre),mid+1,r,pos);
pushup(rt);
} void query(int rt,int lc,int rc,int l,int r)
{
if(l<=lc&&r>=rc)
{
Ans.lmax=max(Ans.lmax,Ans.sum+t[rt].lmax);
Ans.rmax=max(t[rt].rmax,Ans.rmax+t[rt].sum);
Ans.sum+=t[rt].sum;
return;
}
int mid=lc+rc>>1;
if(l<=mid) query(l(rt),lc,mid,l,r);
if(r>mid) query(r(rt),mid+1,rc,l,r);
} bool check(int mid)
{
int res=0;
if(q[1]+1<=q[2]-1)
Ans.clear(),query(root[mid],1,n,q[1]+1,q[2]-1),res+=Ans.sum;
Ans.clear(),query(root[mid],1,n,q[0],q[1]),res+=Ans.rmax;
Ans.clear(),query(root[mid],1,n,q[2],q[3]),res+=Ans.lmax;
return res>=0;
} int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",a+i),id[i]=i;
build(root[1],1,n);
sort(id+1,id+n+1,[](int x,int y){return a[x]<a[y];});
for(int i=2;i<=n;++i) Insert(root[i],root[i-1],1,n,id[i-1]);
scanf("%d",&Q);
while(Q--)
{
for(int i=0;i<4;++i)
scanf("%d",q+i),q[i]=(q[i]+ans)%n+1;
sort(q,q+4); int l=1,r=n;
while(l<=r)
{
int mid=l+r>>1;
if(check(mid)) ans=a[id[mid]],l=mid+1;
else r=mid-1;
}
printf("%d\n",ans);
}
return 0;
}

Luogu2839 [国家集训队]middle 题解的更多相关文章

  1. luogu2839 [国家集训队]middle

    题目链接:洛谷 题目大意:给定一个长度为$n$的序列,每次询问左端点在$[a,b]$,右端点在$[c,d]$的所有子区间的中位数的最大值.(强制在线) 这里的中位数定义为,对于一个长度为$n$的序列排 ...

  2. 【LG2839】[国家集训队]middle

    [LG2839][国家集训队]middle 题面 洛谷 题解 按照求中位数的套路,我们二分答案\(mid\),将大于等于\(mid\)的数设为\(1\),否则为\(-1\). 若一个区间和大于等于\( ...

  3. [国家集训队]middle 解题报告

    [国家集训队]middle 主席树的想法感觉挺妙的,但是这题数据范围这么小,直接分块草过去不就好了吗 二分是要二分的,把\(<x\)置\(-1\),\(\ge x\)的置\(1\),于是我们需要 ...

  4. [国家集训队]middle

    [国家集训队]middle 题目 解法 开\(n\)颗线段树,将第\(i\)颗线段树中大于等于第\(i\)小的数权值赋为1,其他的则为-1,对于每个区间维护一个区间和,最大前缀和,最大后缀和. 然后二 ...

  5. P2839 [国家集训队]middle

    P2839 [国家集训队]middle 好妙的题啊,,,, 首先二分一个答案k,把数列里>=k的数置为1,=0就是k>=中位数,<0就是k<中位数 数列的最大和很好求哇 左边的 ...

  6. CF484E Sign on Fence && [国家集训队]middle

    CF484E Sign on Fence #include<bits/stdc++.h> #define RG register #define IL inline #define _ 1 ...

  7. [洛谷P2839][国家集训队]middle

    题目大意:给你一个长度为$n$的序列$s$.$Q$个询问,问在$s$中的左端点在$[a,b]$之间,右端点在$[c,d]$之间的子段中,最大的中位数. 强制在线. 题解:区间中位数?二分答案,如果询问 ...

  8. BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)

    BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...

  9. 解题:国家集训队 Middle

    题面 求中位数的套路:二分,大于等于的设为1,小于的设为-1 于是可以从小到大排序后依次加入可持久化线段树,这样每次只会变化一个位置 那左右端点是区间怎么办? 先把中间的算上,然后维护每个区间左右两侧 ...

随机推荐

  1. Java IO学习笔记四:Socket基础

    作者:Grey 原文地址:Java IO学习笔记四:Socket基础 准备两个Linux实例(安装好jdk1.8),我准备的两个实例的ip地址分别为: io1实例:192.168.205.138 io ...

  2. 如果在num1的任何位置有一个数字的连续三倍,并且在num2中有一个数字的连续两倍,则返回1。 如果不是这样,则返回0

    ''' 它接受数字num1和num2,如果在num1的任何位置有一个数字的连续三倍,并且在num2中有一个数字的连续两倍,则返回1. 如果不是这样,则返回0 例子 triple_double(4519 ...

  3. 【逆向实战】ES文件浏览器未授权访问漏洞(CVE-2019-6447)具体分析及利用

    /作者:Kali_MG1937 CSDN博客号:ALDYS4 QQ:3496925334 未经许可,禁止转载/ 漏洞简介 CVE-2019-6447是Android端上的一个知名软件:ES文件浏览器的 ...

  4. 并发王者课-铂金2:豁然开朗-“晦涩难懂”的ReadWriteLock竟如此妙不可言

    欢迎来到<并发王者课>,本文是该系列文章中的第15篇. 在上篇文章中,我们介绍了Java中锁的基础Lock接口.在本文中,我们将介绍Java中锁的另外一个重要的基本型接口,即ReadWri ...

  5. 为什么代码规范要求SQL语句不要过多的join?

    面试官:有操作过Linux吗? 我:有的呀 面试官:我想查看内存的使用情况该用什么命令 我:free 或者 top 面试官:那你说一下用free命令都可以看到啥信息 我:那,如下图所示 可以看到内存以 ...

  6. 代码生成器:IDEA 强大的 Live Templates

    前言 Java 开发过程经常需要编写有固定格式的代码,例如说声明一个私有变量,logger或者bean等等.对于这种小范围的代码生成,我们可以利用 IDEA 提供的 Live Templates功能. ...

  7. Ajax 和 JSON

    Ajax:异步更新页面的技术,必须在http或者https网络网络协议下使用             1.原生js实现:共4步             2.jQuery:$.ajax(配置对象);   ...

  8. 一次 RocketMQ 顺序消费延迟的问题定位

    一次 RocketMQ 顺序消费延迟的问题定位 问题背景与现象 昨晚收到了应用报警,发现线上某个业务消费消息延迟了 54s 多(从消息发送到MQ 到被消费的间隔): 2021-06-30T23:12: ...

  9. Sql Server 查询正在执行的sql信息和锁定事务

    执行中的sql SELECT [Spid] = session_Id, ecid, [Database] = DB_NAME(sp.dbid), [User] = nt_username, [Stat ...

  10. Zoho Books十年发展历程

    十年前,我们推出Zoho Books的时候,是为了全面解决企业面临的财务和会计方面的挑战.我们逐渐地从一开始的易用的中小企业在线会计工具,发展成为现在的解决企业复杂的财务挑战的解决方案,其中经历了很多 ...