Solution -「SV 2020 Round I」SA
\(\mathcal{Description}\)
求出处 owo。
给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \(t\),使得 \(t<s\) 且 \(s,t\) 的后缀数组(\(\text{Suffix Array}\),sa[]
)相同。
\(n\le50\)。(建议开到 \(n\le2\times10^5\)。
\(\mathcal{Solution}\)
奇怪的结论
若存在 \(t\),则存在一个 \(t\),其与 \(s\) 仅相差一个字符。考试的时候我猜出来了 w!
算法
有了上面的结论就非常简单了。首先一个显而易见的特判:若 \(s\) 的字符集不是小写字母的一段前缀,显然存在 \(t\)。
然后,先求出原串的 sa[]
。尝试让某个 \(s_i\) 减小 \(1\)。显然,修改 \(s_i\) 不影响 sa[]
,需要保证 \(\operatorname{suffix(i)}\) 是以 \(s_i\) 开头的后缀中最小的。则满足条件的 \(s_i\) 仅有字符集大小个。暴力修改这些 \(s_i\),求出 sa2[]
与原来的 sa[]
比较即可。
复杂度 \(\mathcal O(|\mathit{\Sigma}|n\log n)\)。标算是暴力 sort
求 sa[]
,且尝试修改了所有的 \(s_i\),复杂度 \(\mathcal O(n^3\log n)\),并不优秀。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#define YES() ( puts ( "Exists" ), exit ( 0 ) )
#define NO() ( puts ( "Does not exist" ), exit ( 0 ) )
const int MAXN = 50;
int n, sa[MAXN + 5];
char s[MAXN + 5];
inline void suffixSort ( int* sa ) {
int m = 'z', x[200] {}, y[200] {}, c[200] {};
for ( int i = 1; i <= n; ++ i ) c[i] = 0;
for ( int i = 1; i <= n; ++ i ) ++ c[x[i] = s[i]];
for ( int i = 1; i <= m; ++ i ) c[i] += c[i - 1];
for ( int i = n; i; -- i ) sa[c[x[i]] --] = i;
for ( int j = 1; j <= n; j <<= 1 ) {
int cnt = 0;
for ( int i = n - j + 1; i <= n; ++ i ) y[++ cnt] = i;
for ( int i = 1; i <= n; ++ i ) if ( sa[i] > j ) y[++ cnt] = sa[i] - j;
for ( int i = 1; i <= m; ++ i ) c[i] = 0;
for ( int i = 1; i <= n; ++ i ) ++ c[x[i]];
for ( int i = 1; i <= m; ++ i ) c[i] += c[i - 1];
for ( int i = n; i; -- i ) sa[c[x[y[i]]] --] = y[i], y[i] = 0;
std::swap ( x, y ), x[sa[1]] = 1, cnt = 1;
for ( int i = 2; i <= n; ++ i ) {
x[sa[i]] = cnt += y[sa[i]] ^ y[sa[i - 1]] || y[sa[i] + j] ^ y[sa[i - 1] + j];
}
if ( ( m = cnt ) == n ) break;
}
}
inline void precheck () {
bool used[26] {};
for ( int i = 1; i <= n; ++ i ) used[s[i] - 'a'] = true;
for ( int i = 0, ue = false; i < 26; ++ i ) {
if ( ue && used[i] ) YES ();
ue |= ! used[i];
}
}
inline void check () {
int nsa[MAXN + 5] {};
suffixSort ( nsa );
for ( int i = 1; i <= n; ++ i ) if ( nsa[i] ^ sa[i] ) return ;
YES ();
}
int main () {
freopen ( "sa.in", "r", stdin );
freopen ( "sa.out", "w", stdout );
scanf ( "%s", s + 1 ), n = strlen ( s + 1 );
precheck (), suffixSort ( sa );
for ( int i = 1, las = 'a', t; i <= n; ++ i ) {
if ( s[sa[i]] == las ) continue;
t = s[sa[i]], s[sa[i]] = las, check (), las = s[sa[i]] = t;
}
return NO (), 0;
}
```cpp
Solution -「SV 2020 Round I」SA的更多相关文章
- Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits
\(\mathcal{Description}\) link. 给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...
- Solution -「USACO 2020.12 P」Spaceship
\(\mathcal{Description}\) Link. Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态 ...
- Solution -「USACO 2020.12 P」Sleeping Cows
\(\mathcal{Description}\) Link. 有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小 ...
- 「LibreOJ NOI Round #2」不等关系
「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...
- LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿
二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...
- Solution -「ZJOI 2020」「洛谷 P6631」序列
\(\mathcal{Description}\) Link. 给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- Solution -「FJWC 2020」人生
\(\mathcal{Description}\) OurOJ. 有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点 ...
随机推荐
- 如何在 CentOS 上安装 dos2unix 和 unix2dos 命令
yum install -y dos2unix 注意:以上安装包既包含 dos2unix 命令,又包含 unix2dos 命令.
- JDBC 处理sql查询多个不确定参数
JDBC程序,为了防止SQL注入,通常需要进行参数化查询,但是如果存在多个不确定参数,就比较麻烦了,查阅了一些资料,最后解决了这个问题,现在这里记录一下: public List<TabDl ...
- 创客系列教程——认识LED灯
认识LED灯 一.初识LED灯 LED灯是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光.LED灯逐步融入到生活中的方方面面:室内外的照明.电子指示牌.酷炫的舞台灯光.车辆的 ...
- 关于Vue中根组件与组件树的理解
在观看了b站的关于Vue3的教学视频后,对Vue的根组件与组件树进行简单的总结下 一.实例化Vue应用 // 此时,app就是一个Vue应用的实例,或者说是一个对象 const app = Vue.c ...
- JDK8 一文搞定👍
! https://zhuanlan.zhihu.com/p/442182870 Java8 新特性 学习来源于 B站 尚硅谷yyds Java学习源码 2021/11/22 距离,过年还有 57 天 ...
- docker安装、下载镜像、容器的基本操作
文章目录 一.docker安装与基本使用 1.docker的安装.从远程仓库下载镜像 2.配置docker国内源 二.创建容器 1.create i.创建容器 ii.进入容器 iii.启动容器 2.r ...
- nginx的fastcgi配置
首先参考了一份配置注释(来自"小刚的博客"): #运行用户 user www-data; #启动进程,通常设置成和cpu的数量相等 worker_processes 1; #全局错 ...
- golang中的sync
1. Go语言中可以使用sync.WaitGroup来实现并发任务的同步 package main import ( "fmt" "sync" ) func h ...
- 集合框架-LinkedList集合(有序不唯一)
1 package cn.itcast.p2.linkedlist.demo; 2 3 import java.util.Iterator; 4 import java.util.LinkedList ...
- 集合框架-Map集合特点及常用方法
1 package cn.itcast.p6.map.demo; 2 3 import java.util.HashMap; 4 import java.util.Iterator; 5 import ...