INTERSPEECH 2015 | Scalable Distributed DNN Training Using Commodity GPU Cloud Computing
一般来说,全连接层的前向和后向传递所需的计算量与权重的数量成正比。此外,数据并行训练中所需的带宽与可训练权重的数量成比例。因此,随着每个节点计算速度的提高,所需的网络带宽也随之增加。这篇文章主要是根据阈值进行梯度的稀疏化和量化操作,从而降低分布式训练中的通信开销。稀疏化指的是只传输那些比较重要的梯度(例如绝对值较大的梯度),而量化则是使用较少的比特来表示原始梯度,二者的差别由下图描述[1]:

本文提出的梯度压缩方法基于以下两个观点:(1)很多加速SGD的方法,包括minibatch SGD、动量法、双缓冲以及异步SGD,都可以在某种程度上视为延迟更新的变体;(2)节点上的子梯度是非常稀疏的,这就意味着只有少量的权值需要更新,换句话说,我们只需要传递那些对权值更新产生较大作用的梯度,而不再传输其余的梯度,这样就能降低带宽占用。
因为只传输那些大于某一阈值的梯度,所以我们必须记住这些梯度的索引,以在接收端对其进行重构。在实现上,我们可以使用字典存储索引和对应的梯度值。为了保证精度,我们并不直接在原始梯度上进行操作,而是操纵一个名为梯度残差的东西。在处理每个minibatch时,我们首先将上一次迭代的梯度残差与本次迭代的原始梯度相加,得到本次迭代的梯度残差。随后,对于残差向量中的每个元素,如果该元素大于正阈值,就将该元素的索引与正阈值编码进字典中,再从对应的残差元素中减去阈值;如果该元素小于负阈值,就将该元素的索引与负阈值编码进字典中,再从对应的残差元素中加上阈值。对于那些绝对值小于阈值的残差元素,我们不再传输它们。但是,随着迭代次数的增加,这些元素可能在某次迭代时就超过了阈值,从而完成一次更新。在某种程度上来说,这就是一种延迟更新策略。算法伪代码如下所示:

在实现中,我们将每个梯度(残差)元素编码为两个数字:整数元素索引和浮点梯度元素。为了进一步降低通信开销,本文使用1比特来编码梯度元素,使用31比特编码元素索引,这样就使用4个字节编码了1个整数和1个浮点数。为了保证模型精度,同样需要使用1 Bit SGD中提到的误差补偿技术。需要注意的是,本文使用的是对等结构而非参数服务器架构,而且整个训练过程中只进行梯度的传输,不进行权值的传输。为了降低GPU与OS之间的I/O瓶颈,作者还使用了CUDA中的某些字符串压缩函数。
INTERSPEECH 2015 | Scalable Distributed DNN Training Using Commodity GPU Cloud Computing的更多相关文章
- Meet Dgraph — an open source, scalable, distributed, highly available and fast graph databas
https://dgraph.io/ Meet Dgraph — an open source, scalable, distributed, highly available and fast gr ...
- Scalable, Distributed Systems Using Akka, Spring Boot, DDD, and Java--转
原文地址:https://dzone.com/articles/scalable-distributed-systems-using-akka-spring-boot-ddd-and-java Whe ...
- 论文阅读笔记六十四: Architectures for deep neural network based acoustic models defined over windowed speech waveforms(INTERSPEECH 2015)
论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络 ...
- (转)分布式深度学习系统构建 简介 Distributed Deep Learning
HOME ABOUT CONTACT SUBSCRIBE VIA RSS DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part ...
- https ddos检测——研究现状
from: https://jyx.jyu.fi/bitstream/handle/123456789/52275/1/URN%3ANBN%3Afi%3Ajyu-201612125051.pdf 相关 ...
- 77-CCI,Commodity Channel Index,商品通道指标.(2015.7.1)
CCI,Commodity Channel Index 商品通道指标 Channel Index,商品通道指标.(2015.7.1)" title="77-CCI,Commodit ...
- 分布式系统(Distributed System)资料
这个资料关于分布式系统资料,作者写的太好了.拿过来以备用 网址:https://github.com/ty4z2008/Qix/blob/master/ds.md 希望转载的朋友,你可以不用联系我.但 ...
- [专题论文阅读]【分布式DNN训练系统】 FireCaffe
FireCaffe Forrest N. Iandola FireCaffe: near-linear acceleration of deep neural network training on ...
- Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)
ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...
随机推荐
- test_5 排序‘+’、‘-’
题目是:有一组"+"和"-"符号,要求将"+"排到左边,"-"排到右边,写出具体的实现方法. 方法一: l=['-', ...
- 基于Jenkins+Maven+Gitea+Nexus从0到1搭建CICD环境
在传统的单体软件架构中,软件开发.测试.运维都是以单个进程为单位. 当拆分成微服务之后,单个应用可以被拆分成多个微服务,比如用户系统,可以拆分成基本信息管理.积分管理.订单管理.用户信息管理.合同管理 ...
- 【Java常用类】Instant:瞬时
Instant:瞬时 时间线上的一个瞬时点. 这可能被用来记录应用程序中的事件时间戳,该类型是面向机器的. now():获取本初子午线对应的标准时间 Instant instant = Instant ...
- python环境搭建以及jupyter notebook的安装和启动
一.Python 环境搭建 本章节我们将向大家介绍如何在本地搭建Python开发环境. Python可应用于多平台包括 Linux 和 Mac OS X. 你可以通过终端窗口输入 "pyth ...
- Android 12(S) 图形显示系统 - 基本概念(一)
1 前言 Android图形系统是系统框架中一个非常重要的子系统,与其它子系统一样,Android 框架提供了各种用于 2D 和 3D 图形渲染的 API供开发者使用来创建绚丽多彩的应用APP.图形渲 ...
- jsp标签 formatNumber、formatDate、parseNumber、parseDate的使用
引用本文的有关标签需要引用对应的标签库 <%--引入格式化动作标签库--%> <%@taglib prefix="fmt" uri="http://ja ...
- 【新手笔记】golang中使用protocol buffers 3
主要参考了这篇帖子:https://segmentfault.com/a/1190000009277748 1.下载windows版本的PB https://github.com/protocolbu ...
- Python小练习-购物商城(一部分代码,基于python2.7.5)
新手写作,用来练习与提高python编写.思考能力,有错误的地方请指正,谢谢! 第一次写博客,课题是一位大神的博客,本着练习的目的,就自己重写了一遍,有很多不足的地方,希望借博客记录下自己的成长: ...
- JavaScript设计原则与编程技巧
1 设计原则概述 <UNIX/LINUX设计哲学>设计准则 ① 小既是美. ② 每个程序只做一件事情. ③ 快速建立原型. ④ 舍弃高效率而取可移植性. ⑤ 避免强制性的图形化界面交互. ...
- mysql 相关练习题
/* 自己查询自己 把一张表看成是两张表. 表的设计. SELECT * FROM depart; SELECT d1. NAME '部门', d2. NAME '分部门' FROM depart d ...